

MODEL: RKNL-G Packaged Gas Electric Unit

FORM NO. RSC-862 REV. 5

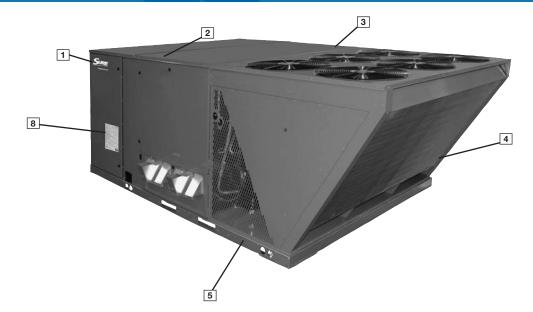
Packaged Gas Electric Unit featuring HumidiDry™ Technology

RKNL-G

- With ClearControl^{™,} HumidiDry[™] and VFD Technology
- Nominal Sizes 15-25 Tons [52.8-87.9 kW]
- ASHRAE 90.1-2019 Compliant

www.SureComfort.com

Table of Contents


Linit Frankman & Damafile	0.10
Unit Features & Benefits	
Model Number Identification	11
Options	12
Selection Procedure	13
General Data	
RKNL-G	14-19
General Data Notes	20
Gross Systems Performance Data	
RKNL-G	21-23
Gross Systems Performance Data – Reheat	
RKNL-G	24-26
Indoor Airflow Performance	
RKNL-G	27-32
Electrical Data	
RKNL-G	33-34
Dimensional Data	35-38
Accessories	39-53
Mechanical Specifications	54-60
Limited Warranty	61

RKNL-G STANDARD FEATURES INCLUDE:

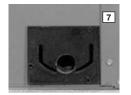
- R-410A HFC refrigerant.
- Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Dual stage compressors.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.
- Forkable base rails for easy handling and lifting.
- Single point electrical connections.

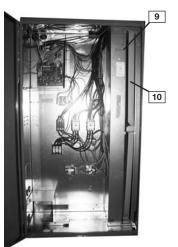
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve, direct spark ignition, and induced draft for efficiency and reliability.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils.
- Factory Installed ClearControl[™] Direct Digital Control (DDC) and sensors which can connect to LonWorks[™] or BACnet[®] BAS systems for remote monitoring and control.
- Variable Frequency Drive (VFD).
- HumidiDry™ Dehumidification System.
- MERV 8 & MERV 13 filters are available as an accessory.
- Standard Modbus interface

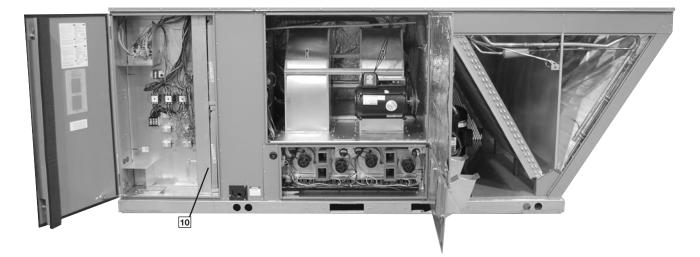
Sure Comfort Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Sure Comfort *Commercial Series*[™] label (1) identifies the brand to the customer.

The sheet-metal cabinet ((2)) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip ((3)), gasket-protected panels and screws. The slanted outdoor coil protects the coil from hail damage ((4)). Every Sure Comfort package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

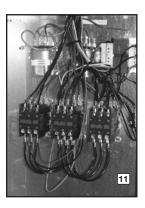
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, fullperimeter base rails ($\overline{5}$), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space ($\overline{6}$). The drainpan ($\overline{7}$) is made of plastic that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Sure Comfort-required reliability tests. Sure Comfort adheres to stringent ISO 9001:2015 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate ([B]). Contractors can rest assured that when a Sure Comfort package unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large, toolless, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the con-


trol box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The twoinch throwaway filters (10) are easily removed on a tracked system for easy replacement.

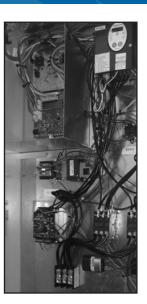
Inside the control box (1), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl[™] system which allows real time monitoring and communication between rooftop units, the RKNL-G Package Gas Electric Unit has a Rooftop Unit

Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessorbased control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKNL-G Package Gas/Electric with ClearControl[™] is specifically designed to be applied in four distinct applications: The RKNL-G is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. BACnet Communication Module plugs into the unit RTU-C controller and allows communication between ClearControl[™] and the BACnet MSTP or IP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.


The RKNL-G is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl[™] and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

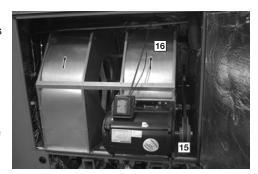
The RKNL-G is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKNL-G is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert[®] module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

Factory installed VFD (variable frequency drive) supply fan optimizes energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD supply fan factory option meet's California Title 24 and ASHRAE 90.1-2019 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise from sudden inrush of

air. Because the airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.


For added convenience in the field, a factory-installed convenience outlet and disconnect (13) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the high-voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

In the outdoor section are the external gauge ports. (14). With gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire assembly

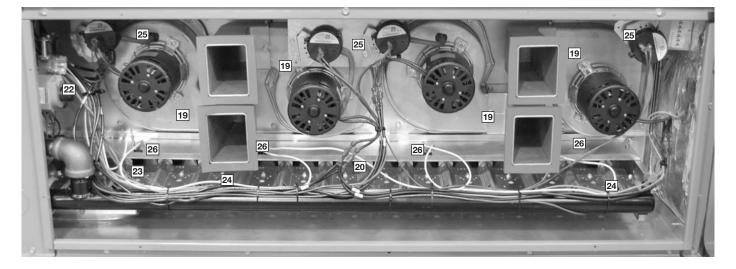
easily slides out by removing four #10 screws from the blower assembly. The adjustable motor pulley ([15]) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Sure Comfort has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (16) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of troublefree operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pullev removal difficult.

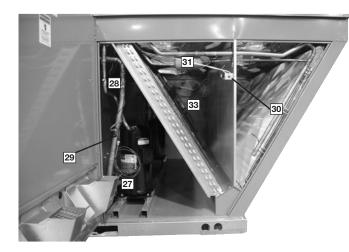
Also inside the blower compartment are the optional low-ambient controls (<u>17</u>). The low-ambient controls allow for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. Use of polarized plugs and schrader fittings allow for easy field or factory installation. The freeze sensor clips on the suction line near the evaporator outlet. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow

and allows monitoring of the suction line temperature on the controller display.

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (18) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

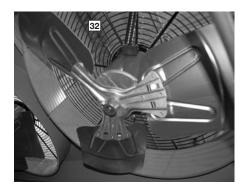

The furnace compartment contains the latest furnace technology on the market. The draft inducers (19) draw the flame from the Sure Comfort exclusive in-shot burners (20) into the aluminized tubular heat exchanger (21) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipped with a two-stage gas valve (22), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.



The direct spark igniter (23) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (24) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (25) to assure adequate combustion airflow before ignition.
- Rollout switches (26) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.



The compressor compartment houses the heartbeat of the unit. The scroll compressor ([27]) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops ([28]) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

The low-pressure switches (29) and high-pressure switches (30) are mounted on the appropriate refrigerant lines in the condenser section. The high-pressure switch will shut off the compressors if pressures exceeding 610 PSIG are detected as may occur if the outdoor fan motor fails. The low-pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs allow for easy field inspection and repair.

Each unit comes standard with filter dryer (31). The condenser fan motor (32) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit. The outdoor coil uses the latest enhanced fin design (33) for the most effective method of heat transfer. The outdoor coil is slanted to protect it from Mother Nature.

Each unit is designed for both downflow or horizontal applications ((34)) for job configuration flexibility. The return air compartment can also contain an economizer (35). Three models exists; two for downflow applications (a downflow economizer with factory installed smoke detector in the return section is available), and one for horizontal applications. Each unit is pre-wired for the economizer to allow quick plug-in installation. The downflow economizer is also available as a factory-installed option. Power Exhaust is easily field-installed. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in

the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is

standard on all economizers. The power exhaust is housed in the barometric relief opening and is easily slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.

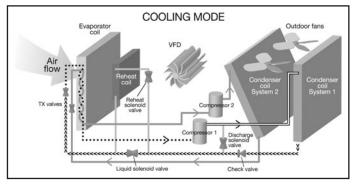
The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Equilations a

tion. Economizer Faults will trigger a network Alarm and can be read at the unit controller display or remotely through a network connection.

The Sure Comfort roofcurb (36) is made for toolless assembly at the jobsite by inserting a pin into a hinge in each corner of the adjacent curb

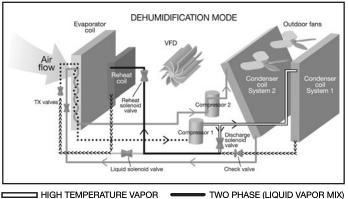
sides (37), which makes the assembly process quick and easy.



36

HumidiDry[™] System Features

HumidiDry[™] is Sure Comfort's exclusive dehumidification package unit solution. It delivers maximum humidity control without compromising desired temperature set point for a high degree of comfort. HumidiDry maintains humidity levels at a desired set point when there's little or no demand for air conditioning. The HumidiDry rooftop unit is controlled by a thermostat and humidistat. The thermostat takes priority on single-stage system. When the thermostat is activated by temperatures that exceed it set point, HumidiDry operates like a standard rooftop unit. It can operate on first stage cooling when demand is low or at full capacity when air conditioning load is high. Unlike other rooftop or reheat units, HumidiDry is uniquely designed so the VFD will operate at a low speed, increasing moisture removal during firststage cooling operation. This provides initial defense for controlling humidity. When temperature is desirable but humidity exceeds the humidistat set point, the HumidiDry rooftop unit initiates a dehumidification cycle using a combination of hot gas and sub-cooled liquid reheat and the VFD operates at low speed. During this cycle, the HumidiDry rooftop unit delivers dry, neutral air. On a two-stage system, it is possible for both a thermostat and humidistat to register readings above set point. Under this condition, the first-stage system runs in the dehumidification cycle, the second-stage system runs in a cooling cycle and the VFD operates on high speed. This provides dry conditioned air.


Figure 1 shows the refrigerant path during the normal cooling mode. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The superheated refrigerant vapor next carries the heat to the outside coil where the heat is then rejected and the refrigerant condenses into a subcooled liquid where the process repeats itself.

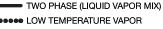
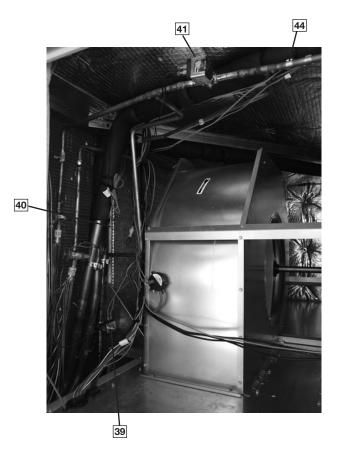
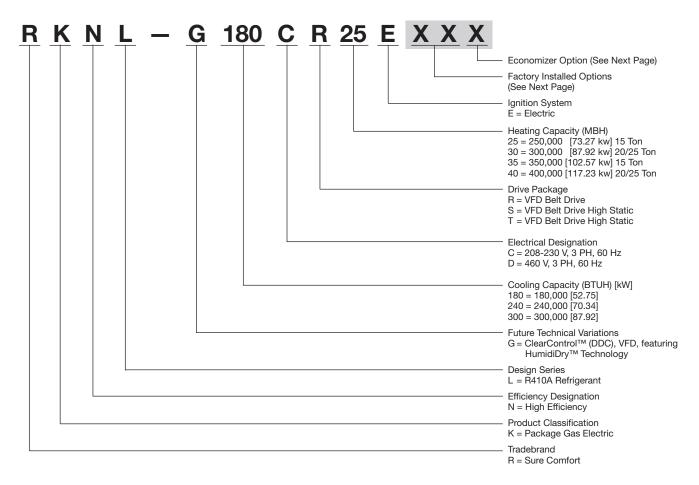

- HIGH TEMPERATURE VAPOR
- TWO PHASE (LIQUID VAPOR MIX)

Figure 1


Figure 2 shows the refrigerant path during the reheat mode. When the reheat cycle is energized by the RTU-C, the reheat solenoid valve, upstream of the reheat coil opens. The liquid solenoid valve ahead of the TXV, closes. The discharge solenoid valve, in the compressor discharge line, opens. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The refrigerant next carries the heat to a parallel path between the outside condenser coil and a bypass circuit. Some of the heat is rejected outdoor. The ratio of heat rejected outdoors versus indoors is controlled by an outdoor fan motor controller (OFMC) that monitors the two-phase temperature and varies the fan speed. This 2-phase refrigerant vapor is then sent to the reheat coil. As the refrigerant travels through the reheat coil it condenses into a subcooled liquid where the process repeats itself.



/ 42

FACTORY INSTALLED OPTION CODES FOR RKNL-G (15-25 TON) [52.8-87.9 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AA			NO OPTIONS	
AD	Х			
AJ		Х		
AH			X	
AR				Х
BF	Х		x	
BG	х	х		
CY		х	x	Х
JD	Х			Х
JB		Х	X	
KA	Х	Х		Х
DP	Х	X	X	Х

"x" indicates factory installed option.

ECONOMIZER SELECTION FOR RKNL-G (15-25 TON) [52.8-87.9 kW]

Option Code	Reheat Only	DDC Single Enthalpy Economizer * With Barometric Relief and Reheat	DDC Single Enthalpy Ecnomizer* With Barometric Relief and Smoke Detector and Reheat			
K	х					
М		Х				
N			х			

"x" indicates factory installed option.

*Downflow economizer only.

Instructions for Factory Installed Option(s) Selection

- **Note:** Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.
- **Step 1.** After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Example: RKNL-G240CL40E**XX**X *(where <u>XX</u> is factory installed option)* Example: No Options RKNL-G240CR40EAAK

Example: No option with factory installed economizer

RKNL-G240CR40EAAM

Example: Options with low ambient and comfort alert, unwired convenience outlet, unfused service disconnect, and stainless steel heat exchanger with no factory installed economizer RKNL-G240CR40ECYK

Example: Options same as above with factory installed economizer RKNL-G240CR40ECYM

www.SureComfort.com

To select an RKNL-G Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:	
Voltage-	208/240V – 3 Phase – 60 Hz
Total Cooling Capacity—	205,000 BTUH [60.0 kW]
Sensible Cooling Capacity-	155,000 BTUH [45.4 kW]
Heating Capacity—	235,000 BTUH [68.8 kW]
*Condenser Entering Air—	95°F [35.0°C] DB
*Evaporator Mixed Air Entering-	
	78°F [25.6°C] DB
*Indoor Air Flow (vertical)—	7200 CFM [3398 L/s]
*External Static Pressure—	0.70 in. WG [.17 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0°C] DB condenser inlet air. Interpolate between 63°F [17.2°C] WB and 67°F [19.4°C] to determine total and sensible capacity and power input for 65°F [18.3°C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,250 BTUH [69.76 kW] Sensible Cooling Capacity = 192,550 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note 0 to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

192,550 + (1.10 x 7,200 x (1 – 0.11) x (78 – 80)) Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = 238,250 x 0.99 = 235,868 BTUH [69.06 kW] Sensible Capacity = 178,452 x 0.96 = 171,314 BTUH [50.16 kW] Power Input = 18,200 x 0.99 = 18,018 Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

> Net Total Capacity = 235,868 – 9,765 = 226,103 BTUH [66.21 kW] Net Sensible Capacity = 171,314 – 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $\mathsf{EER} = \frac{\mathsf{Net Total BTUH [kW] (step 6)}}{\mathsf{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 243,000 BTUH [71.2 kW]

9. CHOOSE MODEL RKNL-G240CR30E.

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

Model RKNL- Series	G180CR25E	G180CR35E	G180CS25E	G180CS35E
ooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]
Net Latent Capacity Btu [kW]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]
Net System Power kW	15.93	15.93	15.93	15.93
eating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage) 1	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102
Heating Output Btu [kW] (1st Stage / 2nd Stage) 1	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.0
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]	15-45 [8.3-25] / 15-45 [8.3-25]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]
,				
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
ompressor	a /a	A (A)		
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
itdoor Sound Rating (dB) ^D	91	91	91	91
itdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
itdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
door Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	ייועונוטוס 1	พนแม _่ มช 1	เพ่นแม่เฮ 1	Multiple 1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184 Disesseble	184
lter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]
eights				
Net Weight Ibs. [kg]	2038 [924]	2051 [930]	2067 [938]	2080 [943]
Ship Weight Ibs. [kg]	2164 [982]	2177 [987]	2193 [995]	2206 [1001]
ee Page 20 for Notes.			[] Desig	nates Metric Conversion

Model RKNL- Series	G180DR25E	G180DR35E	G180DS25E	G180DS35E	
cooling Performance ^A				CONTINUED	
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	
EER	10.8	10.8	10.8	10.8	
IEER ^B	14	14	14	14	
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	
Net Sensible Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	
Net Latent Capacity Btu [kW]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	
Net System Power kW	15.93	15.93	15.93	15.93	
eating Performance (Gas) ^c					
Heating Input Btu [kW] (1st Stage / 2nd Stage) 1	25.000/250.000 [36.62/73.25]	175.000/350.000 [51.27/102.55]	125.000/250.000 [36.62/73.25]	175.000/350.000 [51.27/102	
Heating Output Btu [kW] (1st Stage / 2nd Stage) 1				-	
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]	
Steady State Efficiency (%)	81	81	81	81	
No. Burners	10	14	10	14	
No. Stages	2	2	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]	
Impressor	0.10 [10]	0.10[10]		0.10 [10]	
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll	
utdoor Sound Rating (dB) ^D	91	91	91	91	
utdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]					
	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]	
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	
itdoor Fan—Type	Propeller	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]	
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	
Motor RPM	1075	1075	1075	1075	
door Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds	Multiple	Multiple	Multiple	Multiple	
No. Speeds No. Motors	Multiple 1	iviuitipie 1		iviuiupie 1	
No. Motors Motor HP		۱ ۵	I E	I E	
	3	3	5	5	
Motor RPM	1725	1725	1725	1725	
Motor Frame Size	56 Dianaaahla	56 Dianaaabla	184	184	
lter—Type	Disposable	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508	
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]	299/211 [8477/5982]	
eights		_	_		
Net Weight Ibs. [kg]	2038 [924]	2051 [930]	2067 [938]	2080 [943]	
Ship Weight Ibs. [kg]	2164 [982]	2177 [987]	2193 [995]	2206 [1001]	

See Page 20 for Notes.

Model RKNL- Series	G240CR30E	G240CR40E	G240CS30E	G240CS40E
cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
eating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.9
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
ompressor	0.75 [19]	0.75 [15]	0.75 [19]	0.75 [15]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB) ^D	91	91	91	91
utdoor Sound Rating (dB) ⁵ utdoor Coil—Fin Type				
	Louvered Rifled	Louvered	Louvered Rifled	Louvered Rifled
Tube Type		Rifled		
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
utdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
door Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	5	5	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	213	213
lter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]
/eights	0000	0000 1100	0/07 1/00	·····
Net Weight Ibs. [kg]	2369 [1075]	2383 [1081]	2407 [1092]	2421 [1098]
Ship Weight Ibs. [kg]	2495 [1132]	2509 [1138]	2533 [1149]	2547 [1155]

Model RKNL- Series	G240DR30E	G240DR40E	G240DS30E	G240DS40E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
eating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	· · ·
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
ompressor	[.]			[.]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB) ^D	91	91	91	91
utdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sg. ft. [sg. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]				
	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
utdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
door Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	5	5	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	184	213
lter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]	430/331 [12190/9384]
leights				
			0.407 F. 00003	0.404 [4.000]
Net Weight Ibs. [kg]	2369 [1075]	2389 [1084]	2407 [1092]	2421 [1098]

Nodel RKNL- Series	G300CR30E	G300CR40E	G300CS30E	G300CS40E
cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]
EER	9.8	9.8	9.8	9.8
IEER ^B	13	13	13	13
Nominal CFM/AHRI Rated CFM [L/s]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]
AHRI Net Cooling Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]
Net Sensible Capacity Btu [kW]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]
Net System Power kW	29.18	29.18	29.18	29.18
eating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]		200,000/400,000 [58.6/117.
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.9
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	15-45 [8.3-25] / 15-45 [8.3-25]	10-40 [5.6-22.2] / 10-40 [5.6-22.2]	25-45 [13.9-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
ompressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB) ^D	91	91	91	91
utdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]
Face Area sq. ft. [sq. m]				19.9 [1.85]
	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9] Propeller
utdoor Fan—Type	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
door Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	7 1/2	10	10
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	213	215	215
Iter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
		(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	.,	.,	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508] 464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]
(NO.) Size Recommended in. [mm x mm x mm] efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	.,	.,	.,	
	.,	.,	.,	

Model RKNL- Series	G300DR30E	G300DR40E	G300DS30E	G300DS40E		
ooling Performance ^A						
Gross Cooling Capacity Btu [kW]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]	312,000 [88.74]		
EER	9.8	9.8	9.8	9.8		
IEER ^B	13	13	13	13		
Nominal CFM/AHRI Rated CFM [L/s]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]		
AHRI Net Cooling Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]		
Net Sensible Capacity Btu [kW]	206100 [60.40]	206100 [60.40]	206100 [60.40]	206100 [60.40]		
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 23.41]		
Net System Power kW	29.18	29.18	29.18	29.18		
eating Performance (Gas) ^c						
	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150.000/300.000 [43.95/87.9]	200,000/400,000 [58.6/117.		
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	, , , ,	162,000/324,000 [47.47/94.9		
Temperature Rise Range °F [°C]	10-40 [5.6-22.2] /	15-45 [8.3-25] /	10-40 [5.6-22.2] /	15-45 [8.3-25] /		
(1st Stage / 2nd Stage)	10-40 [5.6-22.2]	15-45 [8.3-25]	10-40 [5.6-22.2]	15-45 [8.3-25]		
Steady State Efficiency (%)	81	81	81	81		
No. Burners	12	14	12	14		
No. Stages	2	2	2	2		
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]		
ompressor						
No./Туре	2/Scroll	2/Scroll	2/Scroll	2/Scroll		
utdoor Sound Rating (dB) ^D	91	91	91	91		
ıtdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered		
Tube Type	Rifled	Rifled	Rifled	Rifled		
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]		
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]		
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]		
door Coil—Fin Type	Louvered	Louvered	Louvered	Louvered		
Tube Type	Rifled	Rifled	Rifled	Rifled		
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]		
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]		
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]		
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves		
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]		
e-Heat Coil—Fin Type	Louvered	Louvered	Louvered	Louvered		
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel		
MicroChannel Depth in. [mm]	0.709 [18]	0.709 [18]	0.709 [18]	0.709 [18]		
Face Area sq. ft. [sq. m]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]	19.9 [1.85]		
Rows / FPI [FPcm]						
utdoor Fan—Type	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]		
	Propeller	Propeller	Propeller	Propeller		
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]		
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1		
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]		
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP		
Motor RPM	1075	1075	1075	1075		
door Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal		
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]		
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)		
No. Speeds	Multiple	Multiple	Multiple	Multiple		
No. Motors	1	1	1	1		
Motor HP	7 1/2	7 1/2	10	10		
Motor RPM	1725	1725	1725	1725		
Motor Frame Size	213	213	215	215		
Iter—Type	Disposable	Disposable	Disposable	Disposable		
Furnished	Yes	Yes	Yes	Yes		
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]		
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]	464/357 [13154/10121]		
/eights	<u> </u>					
Net Weight Ibs. [kg]	2468 [1119]	2482 [1126]	2479 [1124]	2493 [1131]		
Ship Weight Ibs. [kg]	2594 [1177]	2608 [1183]	2605 [1182]	2619 [1188]		

NOTES:

- A. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 340/360.
- B. EER and Integrated Energy Efficiency Ratio (IEER) are rated at AHRI conditions in accordance with AHRI Standard 340/360.
- C. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- D. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①											
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CF	FM [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
		DR ①	.12	.08	.04	.12	.08	.04	.12	.08	.04
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	229.8 [67.3] 134.3 [39.4] 12.6	220.9 [64.7] 121.8 [35.7] 12.3	213.5 [62.5] 111.2 [32.6] 12.1	214.3 [62.8] 165.1 [48.4] 12.4	206.0 [60.4] 149.7 [43.9] 12.2	199.0 [58.3] 136.7 [40.1] 12.0	205.3 [60.1] 189.9 [55.6] 12.2	197.4 [57.8] 172.2 [50.5] 12.0	190.7 [55.9] 157.2 [46.1] 11.8
0	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	225.5 [66.1] 132.1 [38.7] 13.2	216.8 [63.5] 119.8 [35.1] 12.9	209.4 [61.4] 109.4 [32.1] 12.7	209.9 [61.5] 163.0 [47.8] 13.0	201.9 [59.2] 147.8 [43.3] 12.7	195.0 [57.1] 134.9 [39.5] 12.5	200.9 [58.9] 187.7 [55.0] 12.8	193.2 [56.6] 170.2 [49.9] 12.6	186.7 [54.7] 155.4 [45.5] 12.4
U T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	220.8 [64.7] 129.8 [38.1] 13.8	212.3 [62.2] 117.7 [34.5] 13.5	205.1 [60.1] 107.5 [31.5] 13.3	205.3 [60.2] 160.7 [47.1] 13.6	197.4 [57.8] 145.7 [42.7] 13.4	190.7 [55.9] 133.0 [39.0] 13.1	196.3 [57.5] 185.4 [54.3] 13.4	188.7 [55.3] 168.1 [49.3] 13.2	182.3 [53.4] 153.5 [45.0] 13.0
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	215.8 [63.2] 127.4 [37.3] 14.5	207.5 [60.8] 115.5 [33.9] 14.2	200.4 [58.7] 105.5 [30.9] 14.0	200.3 [58.7] 158.2 [46.4] 14.3	192.5 [56.4] 143.5 [42.0] 14.0	186.0 [54.5] 131.0 [38.4] 13.8	191.3 [56.0] 183.0 [53.6] 14.1	183.9 [53.9] 165.9 [48.6] 13.9	177.7 [52.1] 151.5 [44.4] 13.6
R Y B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	210.4 [61.7] 124.8 [36.6] 15.2	202.3 [59.3] 113.2 [33.2] 14.9	195.5 [57.3] 103.3 [30.3] 14.7	194.9 [57.1] 155.6 [45.6] 15.1	187.4 [54.9] 141.1 [41.3] 14.8	181.0 [53.1] 128.8 [37.7] 14.5	185.9 [54.5] 180.4 [52.9] 14.9	178.7 [52.4] 163.6 [47.9] 14.6	172.7 [50.6] 149.3 [43.8] 14.4
U L B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	204.7 [60.0] 122.0 [35.8] 16.0	196.9 [57.7] 110.7 [32.4] 15.7	190.2 [55.7] 101.0 [29.6] 15.5	189.2 [55.4] 152.9 [44.8] 15.8	181.9 [53.3] 138.6 [40.6] 15.5	175.8 [51.5] 126.5 [37.1] 15.3	180.2 [52.8] 177.6 [52.0] 15.7	173.3 [50.8] 161.1 [47.2] 15.4	167.4 [49.1] 147.0 [43.1] 15.1
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	198.7 [58.2] 119.1 [34.9] 16.9	191.0 [56.0] 108.0 [31.7] 16.5	184.6 [54.1] 98.6 [28.9] 16.3	183.2 [53.7] 149.9 [43.9] 16.7	176.1 [51.6] 136.0 [39.8] 16.4	170.1 [49.9] 124.1 [36.4] 16.1	174.2 [51.0] 174.2 [51.0] 16.5	167.5 [49.1] 158.4 [46.4] 16.2	161.8 [47.4] 144.6 [42.4] 15.9
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	192.3 [56.4] 116.1 [34.0] 17.8	184.9 [54.2] 105.2 [30.8] 17.4	178.6 [52.3] 96.1 [28.2] 17.1	176.8 [51.8] 146.9 [43.0] 17.6	170.0 [49.8] 133.2 [39.0] 17.3	164.2 [48.1] 121.6 [35.6] 17.0	167.8 [49.2] 167.8 [49.2] 17.4	161.3 [47.3] 155.6 [45.6] 17.1	155.8 [45.7] 142.1 [41.6] 16.8
Ř E [℃]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	185.6 [54.4] 112.9 [33.1] 18.7	178.4 [52.3] 102.3 [30.0] 18.4	172.4 [50.5] 93.4 [27.4] 18.1	170.0 [49.8] 143.7 [42.1] 18.5	163.5 [47.9] 130.3 [38.2] 18.2	158.0 [46.3] 118.9 [34.9] 17.9	161.0 [47.2] 161.0 [47.2] 18.4	154.8 [45.4] 152.7 [44.8] 18.0	149.6 [43.8] 139.4 [40.9] 17.7
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	178.5 [52.3] 109.5 [32.1] 19.7	171.6 [50.3] 99.3 [29.1] 19.3	165.8 [48.6] 90.6 [26.6] 19.0	163.0 [47.8] 140.3 [41.1] 19.5	156.7 [45.9] 127.2 [37.3] 19.2	151.4 [44.4] 116.2 [34.0] 18.9	154.0 [45.1] 154.0 [45.1] 19.4	148.0 [43.4] 148.0 [43.4] 19.0	143.0 [41.9] 136.7 [40.0] 18.7
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	171.1 [50.1] 106.0 [31.1] 20.8	164.5 [48.2] 96.1 [28.2] 20.4	158.9 [46.6] 87.7 [25.7] 20.0	155.5 [45.6] 136.8 [40.1] 20.6	149.6 [43.8] 124.0 [36.3] 20.2	144.5 [42.3] 113.2 [33.2] 19.9	146.5 [42.9] 146.5 [42.9] 20.4	140.9 [41.3] 140.9 [41.3] 20.0	136.1 [39.9] 133.7 [39.2] 19.7

GROSS SYSTEMS PERFORMANCE DATA-G180

DR —Depression ratio dbE —Entering air dry bulb

b Sens —Sensible capacity x 1000 BTUH

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

wbE—Entering air wet bulb

Power —KW input

	ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①											
-		wbE		71°F [21.7°C]		Jn Ain @ 00 F 	[20.7 C] UDE () 67°F [19.4°C])		63°F [17.2°C]		
-	CI	FM [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	
		DR ①	.12	.08	.04	.12	.08	.04	.12	.08	.04	
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power		274.6 [80.5] 150.1 [44.0] 15.1	266.0 [78.0] 138.1 [40.5] 14.9	269.6 [79.0] 208.0 [61.0] 15.3	258.2 [75.7] 186.8 [54.8] 15.0	250.1 [73.3] 171.9 [50.4] 14.7	257.6 [75.5] 240.7 [70.5] 15.1	246.7 [72.3] 216.2 [63.4] 14.8	239.0 [70.0] 198.9 [58.3] 14.5	
0	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power		272.1 [79.7] 149.2 [43.7] 15.9	263.6 [77.3] 137.3 [40.2] 15.6	267.0 [78.2] 207.0 [60.7] 16.0	255.7 [74.9] 186.0 [54.5] 15.7	247.7 [72.6] 171.1 [50.1] 15.5	255.0 [74.7] 239.7 [70.2] 15.9	244.2 [71.6] 215.3 [63.1] 15.5	236.6 [69.3] 198.1 [58.1] 15.3	
U T D O	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	164.7 [48.3] 17.1	268.8 [78.8] 147.9 [43.4] 16.7	260.5 [76.3] 136.1 [39.9] 16.4	263.6 [77.2] 205.6 [60.3] 16.9	252.4 [74.0] 184.7 [54.1] 16.5	244.6 [71.7] 169.9 [49.8] 16.3	251.6 [73.7] 238.3 [69.8] 16.7	241.0 [70.6] 214.1 [62.7] 16.3	233.4 [68.4] 196.9 [57.7] 16.1	
O R D	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power		264.8 [77.6] 146.3 [42.9] 17.5	256.5 [75.2] 134.6 [39.4] 17.3	259.3 [76.0] 203.8 [59.7] 17.7	248.3 [72.8] 183.1 [53.7] 17.4	240.6 [70.5] 168.4 [49.4] 17.1	247.3 [72.5] 236.5 [69.3] 17.5	236.9 [69.4] 212.4 [62.3] 17.2	229.5 [67.3] 195.4 [57.3] 16.9	
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power		259.9 [76.2] 144.3 [42.3] 18.5	251.8 [73.8] 132.8 [38.9] 18.2	254.2 [74.5] 201.6 [59.1] 18.7	243.5 [71.3] 181.1 [53.1] 18.3	235.9 [69.1] 166.6 [48.8] 18.0	242.2 [71.0] 234.3 [68.7] 18.5	232.0 [68.0] 210.4 [61.7] 18.1	224.8 [65.9] 193.6 [56.7] 17.8	
L B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	158.0 [46.3] 19.8	254.2 [74.5] 141.9 [41.6] 19.4	246.3 [72.2] 130.6 [38.3] 19.1	248.3 [72.8] 198.9 [58.3] 19.6	237.8 [69.7] 178.7 [52.4] 19.2	230.4 [67.5] 164.4 [48.2] 18.9	236.3 [69.3] 231.6 [67.9] 19.4	226.3 [66.3] 208.1 [61.0] 19.0	219.3 [64.3] 191.4 [56.1] 18.7	
E M P E	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power		247.8 [72.6] 139.2 [40.8] 20.4	240.0 [70.3] 128.0 [37.5] 20.1	241.6 [70.8] 195.8 [57.4] 20.7	231.3 [67.8] 175.9 [51.6] 20.2	224.1 [65.7] 161.8 [47.4] 19.9	229.6 [67.3] 228.5 [67.0] 20.5	219.9 [64.4] 205.3 [60.2] 20.0	213.0 [62.4] 188.9 [55.3] 19.7	
R A T U	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power		240.5 [70.5] 136.0 [39.9] 21.5	233.0 [68.3] 125.1 [36.7] 21.1	234.0 [68.6] 192.3 [56.4] 21.7	224.1 [65.7] 172.8 [50.6] 21.3	217.1 [63.6] 158.9 [46.6] 21.0	222.0 [65.1] 222.0 [65.1] 21.5	212.6 [62.3] 202.1 [59.2] 21.1	206.0 [60.4] 186.0 [54.5] 20.8	
R E °F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	147.5 [43.2] 23.1	232.5 [68.1] 132.5 [38.8] 22.6	225.2 [66.0] 121.9 [35.7] 22.2	225.6 [66.1] 188.4 [55.2] 22.9	216.0 [63.3] 169.3 [49.6] 22.4	209.3 [61.3] 155.7 [45.6] 22.0	213.6 [62.6] 213.6 [62.6] 22.7	204.6 [60.0] 198.6 [58.2] 22.2	198.2 [58.1] 182.7 [53.5] 21.9	
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	233.5 [68.4] 143.2 [41.9] 24.2	223.6 [65.5] 128.6 [37.7] 23.7	216.6 [63.5] 118.3 [34.7] 23.4	216.3 [63.4] 184.1 [53.9] 24.0	207.2 [60.7] 165.4 [48.5] 23.5	200.7 [58.8] 152.1 [44.6] 23.2	204.4 [59.9] 204.4 [59.9] 23.9	195.7 [57.4] 194.7 [57.1] 23.4	189.6 [55.6] 179.1 [52.5] 23.0	
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW]	223.4 [65.5] 138.4 [40.6]	214.0 [62.7] 124.3 [36.4]	207.3 [60.7] 114.4 [33.5]	206.3 [60.4] 179.3 [52.5]	197.6 [57.9] 161.1 [47.2]	191.4 [56.1] 148.2 [43.4]	194.3 [56.9] 194.3 [56.9]	186.1 [54.5] 186.1 [54.5]	180.3 [52.8] 175.2 [51.3]	

GROSS SYSTEMS PERFORMANCE DATA – G240

DR -Depression ratio dbE —Entering air dry bulb Total — Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

24.9

24.69

25.3

24.8

NOTES: 1) When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

25.1

24.4

wbE-Entering air wet bulb

Power

Power ---KW input

25.5

[] Designates Metric Conversions

24.6

24.2

					ITERING INDOC)R AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CF	FM [L/s]	10615 [5010]	9650 [4554]	8202 [3871]	10615 [5010]	9650 [4554]	8202 [3871]	10615 [5010]	9650 [4554]	8202 [3871]
		DR ①	.13	.11	.08	.13	.11	.08	.13	.11	.08
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power		337.4 [98.9] 196.5 [57.6] 21.2	328.2 [96.2] 182.7 [53.5] 20.9	326.8 [95.8] 244.1 [71.5] 21.2	321.0 [94.1] 233.3 [68.4] 21.0	312.2 [91.5] 216.9 [63.6] 20.7	315.2 [92.4] 274.9 [80.5] 21.0	309.5 [90.7] 262.6 [77.0] 20.8	301.1 [88.2] 244.2 [71.6] 20.5
0		Total BTUH [kW] Sens BTUH [kW] Power	341.0 [99.9] 204.7 [60.0] 22.1	334.9 [98.1] 195.6 [57.3] 21.9	325.8 [95.5] 181.9 [53.3] 21.6	324.3 [95.0] 243.2 [71.3] 21.9	318.5 [93.3] 232.4 [68.1] 21.7	309.8 [90.8] 216.1 [63.3] 21.4	312.6 [91.6] 274.0 [80.3] 21.7	307.0 [90.0] 261.7 [76.7] 21.5	298.7 [87.5] 243.4 [71.3] 21.2
U T D O		Total BTUH [kW] Sens BTUH [kW] Power		331.6 [97.2] 194.4 [57.0] 22.7	322.6 [94.5] 180.7 [53.0] 22.4	321.0 [94.1] 241.9 [70.9] 22.7	315.2 [92.4] 231.1 [67.7] 22.5	306.6 [89.9] 214.9 [63.0] 22.2	309.3 [90.6] 272.6 [79.9] 22.5	303.8 [89.0] 260.5 [76.3] 22.3	295.5 [86.6] 242.2 [71.0] 22.0
Ö R D		Total BTUH [kW] Sens BTUH [kW] Power	333.5 [97.7] 201.7 [59.1] 23.8	327.6 [96.0] 192.7 [56.5] 23.6	318.6 [93.4] 179.2 [52.5] 23.2	316.8 [92.8] 240.2 [70.4] 23.6	311.1 [91.2] 229.5 [67.2] 23.4	302.7 [88.7] 213.4 [62.5] 23.1	305.1 [89.4] 270.9 [79.4] 23.4	299.7 [87.8] 258.9 [75.9] 23.2	291.5 [85.4] 240.7 [70.5] 22.9
R Y B		Total BTUH [kW] Sens BTUH [kW] Power		322.7 [94.6] 190.7 [55.9] 24.5	313.9 [92.0] 177.4 [52.0] 24.1	311.8 [91.4] 238.1 [69.8] 24.5	306.3 [89.8] 227.5 [66.7] 24.3	297.9 [87.3] 211.5 [62.0] 24.0	300.2 [88.0] 268.8 [78.8] 24.3	294.8 [86.4] 256.8 [75.3] 24.1	286.8 [84.0] 238.9 [70.0] 23.8
U L B T	L 100 Total BTUH [kW B [37.8] Sens BTUH [kW T Power		322.8 [94.6] 197.1 [57.8] 25.6	317.0 [92.9] 188.3 [55.2] 25.4	308.4 [90.4] 175.1 [51.3] 25.1	306.1 [89.7] 235.6 [69.0] 25.5	300.6 [88.1] 225.1 [66.0] 25.2	292.4 [85.7] 209.3 [61.3] 24.9	294.4 [86.3] 266.3 [78.0] 25.3	289.1 [84.7] 254.5 [74.6] 25.0	281.3 [82.4] 236.6 [69.3] 24.7
- M P E		Total BTUH [kW] Sens BTUH [kW] Power		310.6 [91.0] 185.6 [54.4] 26.4	302.1 [88.5] 172.6 [50.6] 26.1	299.5 [87.8] 232.7 [68.2] 26.5	294.2 [86.2] 222.3 [65.1] 26.2	286.1 [83.8] 206.8 [60.6] 25.9	287.8 [84.3] 263.4 [77.2] 26.3	282.7 [82.8] 251.7 [73.8] 26.1	275.0 [80.6] 234.1 [68.6] 25.7
R A T U		Total BTUH [kW] Sens BTUH [kW] Power		303.3 [88.9] 182.4 [53.5] 27.5	295.0 [86.5] 169.6 [49.7] 27.1	292.1 [85.6] 229.4 [67.2] 27.5	286.9 [84.1] 219.2 [64.2] 27.3	279.1 [81.8] 203.8 [59.7] 26.9	280.4 [82.2] 260.1 [76.2] 27.3	275.4 [80.7] 248.5 [72.8] 27.1	267.9 [78.5] 231.1 [67.7] 26.8
R E °F		Total BTUH [kW] Sens BTUH [kW] Power		295.3 [86.5] 178.9 [52.4] 28.6	287.2 [84.2] 166.4 [48.8] 28.2	283.9 [83.2] 225.7 [66.1] 28.7	278.8 [81.7] 215.7 [63.2] 28.4	271.2 [79.5] 200.6 [58.8] 28.0	272.2 [79.8] 256.5 [75.2] 28.5	267.4 [78.4] 245.0 [71.8] 28.2	260.1 [76.2] 227.9 [66.8] 27.8
[°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power		286.4 [83.9] 175.0 [51.3] 29.7	278.6 [81.6] 162.7 [47.7] 29.4	274.9 [80.6] 221.6 [64.9] 29.8	270.0 [79.1] 211.8 [62.1] 29.6	262.6 [77.0] 196.9 [57.7] 29.2	263.2 [77.1] 252.4 [74.0] 29.6	258.5 [75.8] 241.1 [70.7] 29.4	251.5 [73.7] 224.2 [65.7] 29.0
		Total BTUH [kW] Sens BTUH [kW] Power		276.8 [81.1] 170.7 [50.0] 31.0	269.2 [78.9] 158.8 [46.5] 30.5	265.1 [77.7] 217.2 [63.6] 31.0	260.4 [76.3] 207.5 [60.8] 30.8	253.3 [74.2] 193.0 [56.5] 30.4	253.4 [74.3] 247.9 [72.6] 30.9	248.9 [72.9] 236.8 [69.4] 30.6	242.1 [70.9] 220.3 [64.5] 30.2

GROSS SYSTEMS PERFORMANCE DATA-G300

Total—Total capacity x 1000 BTUHSens—Sensible capacity x 1000 BTUH

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Power —KW input

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE)-G180

									-		
					ITERING INDOC)R AIR @ 75°F	[23.9°C] dbE (1)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CI	FM [L/s]	3600 [1699]	2950 [1392]	2400 [1133]	3600 [1699]	2950 [1392]	2400 [1133]	3600 [1699]	2950 [1392]	2400 [1133]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	49.6 [14.5] 9.0 [2.6] 5.9	47.7 [14.0] 8.1 [2.4] 5.8	46.0 [13.5] 7.4 [2.2] 5.7	46.7 [13.7] 14.1 [4.1] 5.9	44.9 [13.2] 12.8 [3.8] 5.8	43.4 [12.7] 11.7 [3.4] 5.7	45.1 [13.2] 20.6 [6.0] 5.9	43.4 [12.7] 18.6 [5.5] 5.8	41.9 [12.3] 17.0 [5.0] 5.7
O O R D	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	48.6 [14.2] 8.0 [2.4] 6.0	46.7 [13.7] 7.3 [2.1] 5.9	45.1 [13.2] 6.6 [1.9] 5.8	45.7 [13.4] 13.2 [3.9] 6.0	44.0 [12.9] 12.0 [3.5] 5.9	42.5 [12.5] 10.9 [3.2] 5.8	44.2 [12.9] 19.6 [5.7] 5.9	42.5 [12.4] 17.8 [5.2] 5.8	41.0 [12.0] 16.2 [4.8] 5.7
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	47.5 [13.9] 7.1 [2.1] 6.1	45.7 [13.4] 6.4 [1.9] 6.0	44.1 [12.9] 5.9 [1.7] 5.9	44.7 [13.1] 12.2 [3.6] 6.1	43.0 [12.6] 11.1 [3.3] 6.0	41.5 [12.2] 10.1 [3.0] 5.9	43.1 [12.6] 18.7 [5.5] 6.0	41.4 [12.1] 16.9 [5.0] 5.9	40.0 [11.7] 15.4 [4.5] 5.8
U L B T	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	46.4 [13.6] 6.1 [1.8] 6.2	44.6 [13.1] 5.6 [1.6] 6.1	43.1 [12.6] 5.1 [1.5] 6.0	43.5 [12.8] 11.3 [3.3] 6.2	41.9 [12.3] 10.2 [3.0] 6.1	40.4 [11.9] 9.4 [2.7] 6.0	42.0 [12.3] 17.7 [5.2] 6.1	40.3 [11.8] 16.1 [4.7] 6.0	39.0 [11.4] 14.7 [4.3] 5.9
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	45.2 [13.2] 5.2 [1.5] 6.3	43.4 [12.7] 4.7 [1.4] 6.2	42.0 [12.3] 4.3 [1.3] 6.1	42.3 [12.4] 10.3 [3.0] 6.3	40.7 [11.9] 9.4 [2.7] 6.2	39.3 [11.5] 8.6 [2.5] 6.1	40.7 [11.9] 16.7 [4.9] 6.2	39.2 [11.5] 15.2 [4.5] 6.1	37.8 [11.1] 13.9 [4.1] 6.0
A T U R E	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	43.9 [12.9] 4.2 [1.2] 6.4	42.2 [12.4] 3.8 [1.1] 6.3	40.8 [11.9] 3.5 [1.0] 6.2	41.0 [12.0] 9.4 [2.7] 6.4	39.5 [11.6] 8.5 [2.5] 6.3	38.1 [11.2] 7.8 [2.3] 6.2	39.4 [11.6] 15.8 [4.6] 6.4	37.9 [11.1] 14.3 [4.2] 6.3	36.6 [10.7] 13.1 [3.8] 6.1
E °F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	42.5 [12.5] 3.2 [1.0] 6.6	40.9 [12.0] 2.9 [0.9] 6.5	39.5 [11.6] 2.7 [0.8] 6.4	39.7 [11.6] 8.4 [2.5] 6.6	38.1 [11.2] 7.6 [2.2] 6.4	36.8 [10.8] 7.0 [2.0] 6.3	38.1 [11.2] 14.8 [4.3] 6.5	36.6 [10.7] 13.4 [3.9] 6.4	35.4 [10.4] 12.3 [3.6] 6.3

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) – G180

wbE 65.3°F [18.5°C] CFM [L/s] 7200 [3398] 5900 [2784] 4800 [2 U 60 Total BTUH [kW] 162.1 [47.5] 155.9 [45.7] 150.6 [4 U [15.6] Power 11.5 11.3 11.7 O 0 [21.1] Power 156.6 [45.9] 150.6 [44.1] 145.4 [4 P [21.1] Power 12.2 12.0 11.6 P 70 Total BTUH [kW] 148.4 [43.5] 142.6 [41.8] 137.8 [2 P 80 Scens BTUH [kW] 148.4 [43.5] 142.6 [41.8] 137.8 [2	I.1] 158.6 [46.5] 152.5 [44.7] 93.0 [27.3] 84.3 [24.7] 11.4 11.2 2.6] 153.0 [44.8] 147.1 [43.1] 8.9] 89.4 [26.2] 81.0 [23.7] 12.1 11.9 0.4] 144.8 [42.4] 139.2 [40.8]	147.3 [43.2] 153. 77.0 [22.6] 103. 11.0 1 142.1 [41.7] 148. 74.0 [21.7] 99. 11.7 1	62.5°F [16.9°C 0 [3398] 5900 [2784] 8 [45.1] 147.9 [43.3] 2 [30.2] 93.6 [27.4] 11.3 11.1 3 [43.5] 142.6 [41.8] 5 [29.2] 90.3 [26.5] 12.0 11.8	4800 [2265] 142.9 [41.9] 85.4 [25.0] 10.9 137.7 [40.4]
O U Total BTUH [kW] 162.1 [47.5] 155.9 [45.7] 150.6 [4 0 T 15.6] Sens BTUH [kW] 81.5 [23.9] 73.9 [21.7] 67.5 [7 0 O O R 70 [21.1] Total BTUH [kW] 156.6 [45.9] 150.6 [44.1] 145.4 [4 0 O O R 70 [21.1] Total BTUH [kW] 156.6 [45.9] 150.6 [20.7] 64.5 [7 0 O O O C 70 [21.1] BTUH [kW] 122.8 [70.6 [20.7] 64.5 [7	I.1] 158.6 [46.5] 152.5 [44.7] 93.0 [27.3] 84.3 [24.7] 11.4 11.2 2.6] 153.0 [44.8] 147.1 [43.1] 8.9] 89.4 [26.2] 81.0 [23.7] 12.1 11.9 0.4] 144.8 [42.4] 139.2 [40.8]	147.3 [43.2] 153. 77.0 [22.6] 103. 11.0 1 142.1 [41.7] 148. 74.0 [21.7] 99. 11.7 1	8 [45.1] 147.9 [43.3] 2 [30.2] 93.6 [27.4] 11.3 11.1 3 [43.5] 142.6 [41.8] 5 [29.2] 90.3 [26.5]	142.9 [41.9] 85.4 [25.0] 10.9 137.7 [40.4] 82.4 [24.1]
U Total BTUH [kW] 81.5 [23.9] 73.9 [21.7] 67.5 [1.7] D Power 11.5 11.3 11.1 Total BTUH [kW] 156.6 [45.9] 150.6 [44.1] 145.4 [2 R Total BTUH [kW] 77.9 [22.8] 70.6 [20.7] 64.5 [7 Power 12.2 12.0 11.5	93.0 [27.3] 84.3 [24.7] 11.4 11.2 2.6] 153.0 [44.8] 147.1 [43.1] 8.9] 89.4 [26.2] 81.0 [23.7] 12.1 11.9 0.4] 144.8 [42.4] 139.2 [40.8]	77.0 [22.6] 103. 11.0 1 142.1 [41.7] 148. 74.0 [21.7] 99. 11.7 1	2 [30.2] 93.6 [27.4] 11.3 11.1 3 [43.5] 142.6 [41.8] 5 [29.2] 90.3 [26.5]	85.4 [25.0] 10.9 137.7 [40.4] 82.4 [24.1]
O 70 Sens BTUH [kW] 130.0 [43.3] 130.0 [41.1] 140.4 [40.1] R [21.1] Power 77.9 [22.8] 70.6 [20.7] 64.5 [40.1]	8.9] 89.4 [26.2] 81.0 [23.7] 12.1 11.9 0.4] 144.8 [42.4] 139.2 [40.8]	74.0 [21.7] 99.4 11.7 1	5 [29.2] 90.3 [26.5]	82.4 [24.1]
Total BTILH [kW] 148 4 [43 5] 142 6 [41 8] 137 8 [4		134 5 [39 4] 140		
B [26.7] Sens bion [kw] 71.8 [21.0] 65.1 [19.1] 59.4 [B 13.0 12.8 12.6	7.4] 83.3 [24.4] 75.5 [22.1] 12.9 12.7	68.9 [20.2] 93.4	1 [41.0] 134.7 [39.5] 4 [27.4] 84.7 [24.8] 12.8 12.6	
U B B [32.2] T T T T T T T T T T T T T T T T T T T		61.8 [18.1] 84.9	2 [37.9] 124.2 [36.4] 9 [24.9] 76.9 [22.5] 13.8 13.5	
E M Total BTUH [kW] 123.9 [36.3] 119.2 [34.9] 115.1 [3 M [37.8] Sens BTUH [kW] 52.1 [15.3] 47.3 [13.9] 43.2 [7 Power 15.0 14.7 14.7 14.5		52.7 [15.4] 73.8	6 [33.9] 111.2 [32.6] 8 [21.6] 66.9 [19.6] 14.8 14.5	
A Total BTUH [kW] 107.7 [31.6] 103.6 [30.4] 100.1 [2 T U Image: Sense BTUH [kW] 38.6 [11.3] 35.0 [10.3] 32.0 [43.3] Power 16.2 15.9 15.6 T Total BTUH [kW] 88.9 [26.0] 85.4 [25.0] 82.5 [27.5]		41.5 [12.2] 60.3	4 [29.1] 95.6 [28.0] 3 [17.7] 54.7 [16.0] 16.0 15.7	
E Total BTUH [kW] 88.9 [26.0] 85.4 [25.0] 82.5 [2 °F [48.9] Sens BTUH [kW] 22.6 [6.6] 20.5 [6.0] 18.7 Power 17.4 17.1 16.8		28.2 [8.3] 44.3	6 [23.6] 77.5 [22.7] 3 [13.0] 40.1 [11.8] 17.3 16.9	

DR —Depression ratio dbE —Entering air dry bulb

wbE—Entering air wet bulb

Total—Total capacity x 1000 BTUHSens—Sensible capacity x 1000 BTUH

Power ---KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

				FN		R AIR @ 75°F	(10 C) dhF)	*		
-		wbE		65.3°F [18.5°C]			64°F [17.8°C]	,		62.5°F [16.9°C]	
	C	FM [L/s]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	63.5 [18.6] 10.7 [3.1] 8.3	60.8 [17.8] 9.6 [2.8] 8.2	58.9 [17.3] 8.8 [2.6] 8.0	60.1 [17.6] 15.0 [4.4] 8.3	57.6 [16.9] 13.5 [4.0] 8.1	55.8 [16.3] 12.4 [3.6] 8.0	58.5 [17.1] 29.1 [8.5] 8.3	56.0 [16.4] 26.1 [7.7] 8.1	54.3 [15.9] 24.0 [7.0] 8.0
O O R D	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	61.8 [18.1] 9.0 [2.6] 8.4	59.2 [17.3] 8.1 [2.4] 8.3	57.3 [16.8] 7.4 [2.2] 8.1	58.4 [17.1] 13.3 [3.9] 8.4	55.9 [16.4] 12.0 [3.5] 8.2	54.2 [15.9] 11.0 [3.2] 8.1	56.8 [16.6] 27.4 [8.0] 8.4	54.4 [15.9] 24.6 [7.2] 8.2	52.7 [15.4] 22.7 [6.6] 8.1
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	60.1 [17.6] 7.3 [2.1] 8.6	57.6 [16.9] 6.5 [1.9] 8.4	55.8 [16.4] 6.0 [1.8] 8.3	56.7 [16.6] 11.6 [3.4] 8.6	54.4 [15.9] 10.4 [3.1] 8.4	52.7 [15.4] 9.6 [2.8] 8.2	55.1 [16.2] 25.7 [7.5] 8.5	52.8 [15.5] 23.1 [6.8] 8.3	51.2 [15.0] 21.3 [6.2] 8.2
U L B T	L 75 Iotal BIUH [kW]		58.5 [17.2] 5.5 [1.6] 8.7	56.1 [16.4] 4.9 [1.4] 8.5	54.3 [15.9] 4.5 [1.3] 8.4	55.2 [16.2] 9.9 [2.9] 8.7	52.8 [15.5] 8.9 [2.6] 8.5	51.2 [15.0] 8.1 [2.4] 8.4	53.5 [15.7] 23.9 [7.0] 8.7	51.3 [15.0] 21.5 [6.3] 8.5	49.7 [14.6] 19.8 [5.8] 8.3
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	57.0 [16.7] 3.7 [1.1] 8.9	54.6 [16.0] 3.3 [1.0] 8.7	52.9 [15.5] 3.0 [0.9] 8.6	53.6 [15.7] 8.0 [2.4] 8.9	51.3 [15.0] 7.2 [2.1] 8.7	49.7 [14.6] 6.6 [1.9] 8.5	52.0 [15.2] 22.1 [6.5] 8.8	49.8 [14.6] 19.9 [5.8] 8.6	48.3 [14.1] 18.3 [5.4] 8.5
A T U R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	55.5 [16.3] 1.8 [0.5] 9.1	53.2 [15.6] 1.6 [0.5] 8.9	51.5 [15.1] 1.5 [0.4] 8.7	52.1 [15.3] 6.1 [1.8] 9.0	49.9 [14.6] 5.5 [1.6] 8.9	48.4 [14.2] 5.1 [1.5] 8.7	50.5 [14.8] 20.2 [5.9] 9.0	48.4 [14.2] 18.2 [5.3] 8.8	46.9 [13.7] 16.7 [4.9] 8.7
E °F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	54.1 [15.9] -0.1 [0.0] 9.3	51.8 [15.2] -0.1 [0.0] 9.1	50.2 [14.7] -0.1 [0.0] 8.9	50.7 [14.9] 4.2 [1.2] 9.3	48.6 [14.2] 3.8 [1.1] 9.1	47.1 [13.8] 3.5 [1.0] 8.9	49.1 [14.4] 18.3 [5.4] 9.2	47.0 [13.8] 16.4 [4.8] 9.0	45.6 [13.4] 15.1 [4.4] 8.9

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE)-G240

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE) – G240

						IR AIR @ /3'F	[23.9°C] dbE 🛈)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	CF	-M [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	192.6 [56.4] 88.3 [25.9] 14.1	184.4 [54.0] 79.3 [23.2] 13.8	178.7 [52.4] 72.9 [21.4] 13.6	187.7 [55.0] 102.9 [30.2] 14.0	179.7 [52.7] 92.5 [27.1] 13.7	174.1 [51.0] 85.1 [24.9] 13.5	184.2 [54.0] 118.4 [34.7] 14.0	176.4 [51.7] 106.3 [31.2] 13.7	170.9 [50.1] 97.8 [28.7] 13.5
O O R D	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power	186.2 [54.6] 86.1 [25.2] 14.9	178.4 [52.3] 77.4 [22.7] 14.5	172.8 [50.6] 71.2 [20.9] 14.3	181.4 [53.1] 100.8 [29.5] 14.8	173.7 [50.9] 90.5 [26.5] 14.5	168.3 [49.3] 83.3 [24.4] 14.2	177.9 [52.1] 116.2 [34.1] 14.7	170.4 [49.9] 104.4 [30.6] 14.4	165.0 [48.4] 96.1 [28.1] 14.2
R Y B	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	177.2 [51.9] 81.3 [23.8] 15.9	169.7 [49.7] 73.0 [21.4] 15.5	164.4 [48.2] 67.2 [19.7] 15.3	172.3 [50.5] 96.0 [28.1] 15.8	165.0 [48.4] 86.2 [25.3] 15.5	159.9 [46.8] 79.3 [23.2] 15.2	168.8 [49.5] 111.4 [32.6] 15.7	161.7 [47.4] 100.1 [29.3] 15.4	156.6 [45.9] 92.1 [27.0] 15.2
U L B T	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	165.3 [48.5] 73.8 [21.6] 17.2	158.4 [46.4] 66.3 [19.4] 16.8	153.4 [45.0] 61.0 [17.9] 16.6	160.5 [47.0] 88.5 [25.9] 17.1	153.7 [45.0] 79.5 [23.3] 16.7	148.9 [43.6] 73.1 [21.4] 16.5	157.0 [46.0] 103.9 [30.4] 17.0	150.4 [44.1] 93.3 [27.3] 16.7	145.7 [42.7] 85.9 [25.2] 16.4
E M P E R	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	150.8 [44.2] 63.6 [18.6] 18.8	144.4 [42.3] 57.1 [16.7] 18.4	139.9 [41.0] 52.6 [15.4] 18.1	145.9 [42.8] 78.3 [22.9] 18.7	139.7 [40.9] 70.3 [20.6] 18.3	135.4 [39.7] 64.7 [19.0] 18.0	142.4 [41.7] 93.7 [27.5] 18.6	136.4 [40.0] 84.2 [24.7] 18.2	132.1 [38.7] 77.4 [22.7] 17.9
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	133.4 [39.1] 50.7 [14.9] 20.6	127.8 [37.5] 45.6 [13.4] 20.2	123.8 [36.3] 41.9 [12.3] 19.9	128.6 [37.7] 65.4 [19.2] 20.5	123.1 [36.1] 58.8 [17.2] 20.1	119.3 [35.0] 54.0 [15.8] 19.8	125.1 [36.7] 80.8 [23.7] 20.5	119.8 [35.1] 72.6 [21.3] 20.0	116.1 [34.0] 66.8 [19.6] 19.7
E °F [°C]	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	113.4 [33.2] 35.2 [10.3] 22.8	108.6 [31.8] 31.6 [9.3] 22.3	105.2 [30.8] 29.1 [8.5] 22.0	108.5 [31.8] 49.9 [14.6] 22.7	103.9 [30.4] 44.8 [13.1] 22.2	100.7 [29.5] 41.2 [12.1] 21.9	105.0 [30.8] 65.3 [19.1] 22.6	100.6 [29.5] 58.7 [17.2] 22.1	97.4 [28.6] 54.0 [15.8] 21.8

DR —Depression ratio dbE —Entering air dry bulb

NOTES: When the entering air dry bulb is other than 80°F [27°C], adjust the sensible

wbE—Entering air wet bulb

Total—Total capacity x 1000 BTUHSens—Sensible capacity x 1000 BTUH

Power —KW input

capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

GROSS SYSTEMS PERFORMANCE DATA (LOW REHEAT MODE)-G300

					ITERING INDOC	R AIR @ 75°F)			
		wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
	C	FM [L/s]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]	4800 [2265]	3863 [1823]	3200 [1510]
O U T D	60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	71.4 [20.9] 11.7 [3.4] 8.9	68.4 [20.1] 10.5 [3.1] 8.7	66.3 [19.4] 9.7 [2.8] 8.6	67.6 [19.8] 18.4 [5.4] 8.8	64.7 [19.0] 16.6 [4.9] 8.7	62.7 [18.4] 15.2 [4.5] 8.5	65.4 [19.2] 28.6 [8.4] 8.8	62.7 [18.4] 25.7 [7.5] 8.6	60.7 [17.8] 23.7 [6.9] 8.5
O O R D	65 [18.3]	Total BTUH [kW] Sens BTUH [kW] Power	69.5 [20.4] 9.8 [2.9] 9.0	66.5 [19.5] 8.8 [2.6] 8.8	64.5 [18.9] 8.1 [2.4] 8.7	65.6 [19.2] 16.5 [4.8] 9.0	62.8 [18.4] 14.8 [4.4] 8.8	60.9 [17.8] 13.7 [4.0] 8.6	63.5 [18.6] 26.7 [7.8] 8.9	60.8 [17.8] 24.0 [7.0] 8.7	58.9 [17.3] 22.1 [6.5] 8.6
R Y B	70 [21.1]	Total BTUH [kW] Sens BTUH [kW] Power		64.5 [18.9] 7.0 [2.1] 9.0	62.4 [18.3] 6.4 [1.9] 8.8	63.4 [18.6] 14.5 [4.3] 9.1	60.8 [17.8] 13.1 [3.8] 8.9	58.9 [17.3] 12.0 [3.5] 8.8	61.3 [18.0] 24.7 [7.2] 9.1	58.7 [17.2] 22.2 [6.5] 8.9	56.9 [16.7] 20.4 [6.0] 8.7
U L B T	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	64.9 [19.0] 5.7 [1.7] 9.4	62.2 [18.2] 5.2 [1.5] 9.2	60.3 [17.7] 4.7 [1.4] 9.0	61.1 [17.9] 12.5 [3.7] 9.3	58.5 [17.1] 11.2 [3.3] 9.1	56.7 [16.6] 10.3 [3.0] 9.0	58.9 [17.3] 22.7 [6.6] 9.3	56.4 [16.5] 20.4 [6.0] 9.1	54.7 [16.0] 18.7 [5.5] 8.9
E M P E R	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	62.4 [18.3] 3.6 [1.1] 9.6	59.7 [17.5] 3.2 [0.9] 9.4	57.9 [17.0] 3.0 [0.9] 9.3	58.5 [17.2] 10.3 [3.0] 9.6	56.1 [16.4] 9.3 [2.7] 9.4	54.3 [15.9] 8.5 [2.5] 9.2	56.4 [16.5] 20.5 [6.0] 9.5	54.0 [15.8] 18.4 [5.4] 9.3	52.3 [15.3] 17.0 [5.0] 9.2
ATURE	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	59.6 [17.5] 1.4 [0.4] 9.9	57.1 [16.7] 1.2 [0.4] 9.7	55.3 [16.2] 1.1 [0.3] 9.5	55.8 [16.3] 8.1 [2.4] 9.9	53.4 [15.7] 7.3 [2.1] 9.7	51.8 [15.2] 6.7 [2.0] 9.5	53.6 [15.7] 18.3 [5.4] 9.8	51.4 [15.0] 16.4 [4.8] 9.6	49.8 [14.6] 15.1 [4.4] 9.5
E °F [°C]	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	56.7 [16.6] -0.9 [-0.3] 10.2	54.3 [15.9] -0.8 [-0.2] 10.0	52.6 [15.4] -0.8 [-0.2] 9.9	52.8 [15.5] 5.8 [1.7] 10.2	50.6 [14.8] 5.2 [1.5] 10.0	49.0 [14.4] 4.8 [1.4] 9.8	50.7 [14.9] 16.0 [4.7] 10.1	48.5 [14.2] 14.4 [4.2] 9.9	47.0 [13.8] 13.2 [3.9] 9.8

GROSS SYSTEMS PERFORMANCE DATA (HIGH REHEAT MODE)-G300

			EN	ITERING INDOC)R AIR @ 75°F	[23.9°C] dbE 🛈)			
	wbE		65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]	
CF	FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
60 [15.6]	Total BTUH [kW] Sens BTUH [kW] Power	248.3 [72.8] 123.3 [36.1] 17.6	237.8 [69.7] 110.8 [32.5] 17.3	230.4 [67.5] 101.9 [29.9] 17.0	242.5 [71.1] 140.7 [41.2] 17.5	232.2 [68.1] 126.4 [37.0] 17.1	225.0 [65.9] 116.2 [34.1] 16.9	236.6 [69.3] 162.1 [47.5] 17.4	226.6 [66.4] 145.6 [42.7] 17.0	219.6 [64.3] 134.0 [39.3] 16.7
70 [21.1]	Sone BTILH [kW]		228.9 [67.1] 104.3 [30.6] 18.3	221.7 [65.0] 96.0 [28.1] 18.0	233.2 [68.3] 133.5 [39.1] 18.6	223.3 [65.4] 119.9 [35.1] 18.2	216.4 [63.4] 110.3 [32.3] 17.9	227.3 [66.6] 154.9 [45.4] 18.4	217.7 [63.8] 139.2 [40.8] 18.0	210.9 [61.8] 128.0 [37.5] 17.8
80 [26.7]			217.3 [63.7] 96.0 [28.1] 19.7	210.5 [61.7] 88.3 [25.9] 19.4	221.1 [64.8] 124.2 [36.4] 20.0	211.8 [62.1] 111.6 [32.7] 19.6	205.2 [60.1] 102.6 [30.1] 19.3	215.2 [63.1] 145.7 [42.7] 19.9	206.1 [60.4] 130.8 [38.3] 19.4	199.7 [58.5] 120.4 [35.3] 19.2
90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	212.0 [62.1] 95.5 [28.0] 22.0	203.1 [59.5] 85.8 [25.1] 21.5	196.7 [57.7] 78.9 [23.1] 21.2	206.2 [60.4] 112.9 [33.1] 21.8	197.5 [57.9] 101.4 [29.7] 21.4	191.4 [56.1] 93.3 [27.3] 21.0	200.4 [58.7] 134.3 [39.4] 21.7	191.9 [56.2] 120.6 [35.4] 21.2	185.9 [54.5] 111.0 [32.5] 20.9
100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	194.4 [57.0] 82.1 [24.1] 24.2	186.2 [54.6] 73.7 [21.6] 23.7	180.4 [52.9] 67.8 [19.9] 23.3	188.6 [55.3] 99.4 [29.1] 24.0	180.6 [52.9] 89.3 [26.2] 23.5	175.0 [51.3] 82.2 [24.1] 23.2	182.7 [53.6] 120.9 [35.4] 23.9	175.0 [51.3] 108.6 [31.8] 23.4	169.6 [49.7] 99.9 [29.3] 23.0
110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	174.0 [51.0] 66.6 [19.5] 26.7	166.6 [48.8] 59.8 [17.5] 26.2	161.4 [47.3] 55.0 [16.1] 25.8	168.2 [49.3] 83.9 [24.6] 26.6	161.1 [47.2] 75.4 [22.1] 26.0	156.1 [45.7] 69.3 [20.3] 25.7	162.3 [47.6] 105.4 [30.9] 26.5	155.5 [45.6] 94.6 [27.7] 25.9	150.6 [44.1] 87.1 [25.5] 25.5
120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	150.8 [44.2] 49.0 [14.4] 29.7	144.4 [42.3] 44.0 [12.9] 29.1	139.9 [41.0] 40.5 [11.9] 28.6	145.0 [42.5] 66.3 [19.4] 29.6	138.9 [40.7] 59.6 [17.5] 28.9	134.5 [39.4] 54.8 [16.1] 28.5	139.1 [40.8] 87.8 [25.7] 29.4	133.3 [39.0] 78.8 [23.1] 28.8	129.1 [37.8] 72.5 [21.2] 28.4
	60 [15.6] 70 [21.1] 80 [26.7] 90 [32.2] 100 [37.8] 110 [43.3] 120 [48.9]	CFM [L/s] 60 Total BTUH [kW] 15.6] Sens BTUH [kW] Power Total BTUH [kW] 70 Total BTUH [kW] [21.1] Sens BTUH [kW] Power Total BTUH [kW] 80 Total BTUH [kW] [26.7] Power 90 Total BTUH [kW] [32.2] Power 100 Total BTUH [kW] [37.8] Sens BTUH [kW] Power 110 [43.3] Total BTUH [kW] Power 120 Total BTUH [kW] Sens BTUH [kW]	CFM [L/s] 9600 [4531] 60 [15.6] Total BTUH [kW] Sens BTUH [kW] 248.3 [72.8] 123.3 [36.1] 17.6 70 [21.1] Total BTUH [kW] Sens BTUH [kW] 239.0 [70.0] 116.1 [34.0] 18.7 80 [26.7] Total BTUH [kW] Power 226.9 [66.5] 106.9 [31.3] 20.1 90 [32.2] Total BTUH [kW] Power 212.0 [62.1] 95.5 [28.0] 22.0 100 [37.8] Total BTUH [kW] Power 94.4 [57.0] 82.1 [24.1] 24.2 110 [43.3] Total BTUH [kW] Power 174.0 [51.0] 66.6 [19.5] 26.7 120 [48.9] Total BTUH [kW] Power 150.8 [44.2] 49.0 [14.4] 29.7	CFM [L/s] 9600 [4531] 7725 [3646] 60 Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 15.6] Sens BTUH [kW] 123.3 [36.1] 110.8 [32.5] 70 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 70 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 70 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 70 Sens BTUH [kW] 239.0 [70.0] 228.9 [67.1] 70 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 90 Fotal BTUH [kW] 226.9 [66.5] 217.3 [63.7] 90 Total BTUH [kW] 20.1 19.7 90 Total BTUH [kW] 20.1 19.7 90 Total BTUH [kW] 212.0 [62.1] 20.3.1 [59.5] 90 Sens BTUH [kW] 95.5 [28.0] 85.8 [25.1] 90 Sens BTUH [kW] 22.0 21.5 100 Sens BTUH [kW] 24.2 23.7 110 Total BTUH [kW] 24.2 23.7 110 <td< th=""><th>CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 90wer 17.6 110.8 [32.5] 101.9 [29.9] 17.6 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 90wer 116.1 [34.0] 104.3 [30.6] 96.0 [28.1] 18.7 80 [26.7] Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 90 [32.2] Total BTUH [kW] 221.0 [62.1] 203.1 [59.5] 196.7 [57.7] 90 [37.8] Total BTUH [kW] 212.0 [62.1] 203.1 [59.5] 196.7 [57.7] 90wer 22.0 21.5 21.2 21.2 100 Total BTUH [kW] 194.4 [57.0] 86.2 [54.6] 180.4 [52.9] [37.8] Power 24.2 23.7 23.3 110 Total BTUH [kW] 174.0 [51.0] 166.6 [48.8] 161.4 [47.3] [37.8] Power 26.7 26.2 25.8 110 Total</th><th>CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 90wer 17.6 17.3 17.0 17.5 101.9 [29.9] 140.7 [41.2] 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 70 [21.1] Sens BTUH [kW] 239.0 [70.0] 143.3 [30.6] 96.0 [28.1] 133.5 [39.1] 90wer Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 80 [26.7] Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 90 Total BTUH [kW] 220.0 21.5 210.5 [61.7] 221.1 [64.8] 91 Sens BTUH [kW] 212.0 [62.1] 203.1 [59.5] 196.7 [57.7] 206.2 [60.4] 90 Sens BTUH [kW] 22.0 21.5 21.2 <</th><th>CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 70 [21.1] Sens BTUH [kW] 123.3 [36.1] 110.8 [32.5] 101.9 [29.9] 140.7 [41.2] 126.4 [37.0] 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 80 [26.7] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 90 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 90 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 90 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 90 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 111.6 [32.7] 90wer 21.0 [</th><th>CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 6400 [3020] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 225.0 [65.9] 70 [21.1] Sens BTUH [kW] 123.3 [36.1] 110.8 [32.5] 101.9 [29.9] 140.7 [41.2] 126.4 [37.0] 116.2 [34.1] 70 [21.1] Sens BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 216.4 [63.4] 90wer 18.7 18.3 18.0 18.6 182.2 17.9 80 Sens BTUH [kW] 106.9 [31.3] 96.0 [28.1] 133.5 [39.1] 119.2 [35.1] 110.3 [32.3] 90 Total BTUH [kW] 212.0 [62.1] 201.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 90 Total BTUH [kW] 212.0 [62.1] 203.1 [59.5] 196.7 [57.7] 206.2 [60.4] 197.5 [57.9] 191.4 [56.1] 92.2 0.1 19.7 19.4 20.0 19.6 19.3</th><th>CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 225.0 [65.9] 236.6 [69.3] 70 [21.1] Fower 17.6 17.3 17.0 17.5 17.1 16.2 [34.1] 162.1 [47.5] 70 [21.1] Fotal BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 216.4 [63.4] 227.3 [66.6] [21.1] Power 18.7 18.3 18.0 18.6 182.2 17.9 18.4 80 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 215.2 [63.1] 90 Sens BTUH [kW] 220.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 215.2 [63.1] 90 Sens BTUH [kW] 20.1 19.7 19.4 20.0 19.7 19.4 [65.7]<</th><th>CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 225.0 [65.9] 236.6 [69.3] 226.6 [66.4] 17.6 17.3 17.0 17.3 17.0 17.1 16.9 17.4 17.0 70 Sens BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 216.4 [63.4] 227.3 [66.6] 217.7 [63.8] 80 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 215.2 [63.1] 206.1 [60.4] 18.7 18.3 19.0 18.3 [25.9] 124.2 [36.4] 111.6 [32.7] 102.6 [30.1] 145.7 [42.7] 130.8 [38.3] 126.7] Power 20.1 19.7 19.4 20.0 19.6 19.3 19.9 19.4 126.7] Power 22.0 23.1 [59.5]</th></td<>	CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 90wer 17.6 110.8 [32.5] 101.9 [29.9] 17.6 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 90wer 116.1 [34.0] 104.3 [30.6] 96.0 [28.1] 18.7 80 [26.7] Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 90 [32.2] Total BTUH [kW] 221.0 [62.1] 203.1 [59.5] 196.7 [57.7] 90 [37.8] Total BTUH [kW] 212.0 [62.1] 203.1 [59.5] 196.7 [57.7] 90wer 22.0 21.5 21.2 21.2 100 Total BTUH [kW] 194.4 [57.0] 86.2 [54.6] 180.4 [52.9] [37.8] Power 24.2 23.7 23.3 110 Total BTUH [kW] 174.0 [51.0] 166.6 [48.8] 161.4 [47.3] [37.8] Power 26.7 26.2 25.8 110 Total	CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 90wer 17.6 17.3 17.0 17.5 101.9 [29.9] 140.7 [41.2] 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 70 [21.1] Sens BTUH [kW] 239.0 [70.0] 143.3 [30.6] 96.0 [28.1] 133.5 [39.1] 90wer Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 80 [26.7] Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 90 Total BTUH [kW] 220.0 21.5 210.5 [61.7] 221.1 [64.8] 91 Sens BTUH [kW] 212.0 [62.1] 203.1 [59.5] 196.7 [57.7] 206.2 [60.4] 90 Sens BTUH [kW] 22.0 21.5 21.2 <	CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 70 [21.1] Sens BTUH [kW] 123.3 [36.1] 110.8 [32.5] 101.9 [29.9] 140.7 [41.2] 126.4 [37.0] 70 [21.1] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 80 [26.7] Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 90 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 90 Total BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 90 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 90 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 111.6 [32.7] 90wer 21.0 [CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 6400 [3020] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 225.0 [65.9] 70 [21.1] Sens BTUH [kW] 123.3 [36.1] 110.8 [32.5] 101.9 [29.9] 140.7 [41.2] 126.4 [37.0] 116.2 [34.1] 70 [21.1] Sens BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 216.4 [63.4] 90wer 18.7 18.3 18.0 18.6 182.2 17.9 80 Sens BTUH [kW] 106.9 [31.3] 96.0 [28.1] 133.5 [39.1] 119.2 [35.1] 110.3 [32.3] 90 Total BTUH [kW] 212.0 [62.1] 201.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 90 Total BTUH [kW] 212.0 [62.1] 203.1 [59.5] 196.7 [57.7] 206.2 [60.4] 197.5 [57.9] 191.4 [56.1] 92.2 0.1 19.7 19.4 20.0 19.6 19.3	CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 225.0 [65.9] 236.6 [69.3] 70 [21.1] Fower 17.6 17.3 17.0 17.5 17.1 16.2 [34.1] 162.1 [47.5] 70 [21.1] Fotal BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 216.4 [63.4] 227.3 [66.6] [21.1] Power 18.7 18.3 18.0 18.6 182.2 17.9 18.4 80 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 215.2 [63.1] 90 Sens BTUH [kW] 220.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 215.2 [63.1] 90 Sens BTUH [kW] 20.1 19.7 19.4 20.0 19.7 19.4 [65.7]<	CFM [L/s] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 6400 [3020] 9600 [4531] 7725 [3646] 60 [15.6] Total BTUH [kW] 248.3 [72.8] 237.8 [69.7] 230.4 [67.5] 242.5 [71.1] 232.2 [68.1] 225.0 [65.9] 236.6 [69.3] 226.6 [66.4] 17.6 17.3 17.0 17.3 17.0 17.1 16.9 17.4 17.0 70 Sens BTUH [kW] 239.0 [70.0] 228.9 [67.1] 221.7 [65.0] 233.2 [68.3] 223.3 [65.4] 216.4 [63.4] 227.3 [66.6] 217.7 [63.8] 80 Total BTUH [kW] 226.9 [66.5] 217.3 [63.7] 210.5 [61.7] 221.1 [64.8] 211.8 [62.1] 205.2 [60.1] 215.2 [63.1] 206.1 [60.4] 18.7 18.3 19.0 18.3 [25.9] 124.2 [36.4] 111.6 [32.7] 102.6 [30.1] 145.7 [42.7] 130.8 [38.3] 126.7] Power 20.1 19.7 19.4 20.0 19.6 19.3 19.9 19.4 126.7] Power 22.0 23.1 [59.5]

DR —Depression ratio dbE —Entering air dry bulb

wbE—Entering air wet bulb

Total—Total capacity x 1000 BTUHSens—Sensible capacity x 1000 BTUH

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible

Power ---KW input

capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

>
2
6
Π.
SIDEFL
Ξ
SI
S
1
H
÷
90 H
O
_
FON [52.7 kW]
S
<u> </u>
N.
2
7
5
Ľ
12
'n.
Щ.
9
5
2
ſ
ō
Ľ,
ſ
Щ
Ω
2
3
AIRFLOW
Ē

	Cap	Capacity		15 Tons [52.7 kW]	52.7 k	[M																															
AIr															Exter	External Static Pressure—Inches of Water [kPa]	atic P	ressu	re-Ir	nches	of Wa	ter (k	Pa]														
PEW II /61 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	0.1[.(02]	0.2 [.0	15] O.	3[.07] 0.4	1 . 10	0.5	[.12]	0.6	[.15]	0.1	[.17]	0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	20] (0.9[.2	2] 1	.0[.2	5] 1.	1[.2	7] 1.	2 [.30	1.	3 [.32	1.4	[.35]	1.5	[.37]	1.6	.40]	1.7[.	42] 1	1.8 [.4	5] 1.	9[.47	1 2.0	[.50]
[6/J] W	RPM W RPM W RPM W RPM W RPM W RPM W RPM	N	MA	W RF	M M	RPI	M	RPN	N	RPN	N	RPN	۸V	RPM W	W	PM	W	- MA	W RF	۰ Mo	N RP	M M	/ RP	M	RPI	M	RPN	N	RPM W RPM W RPM W	N	RPM	N	RPM W		RPM W	RPM	W
4800 [2265]	Ι		' 					1	Ι	565	1521	591	1621	616 1	1723 6	640 18	1827 6	663 19	1934 68	686 20	2044 708	38 2156	56 729	9 2270	0 750	0 2387	7 770	2507	789	2629	808	2753 8	825 28	2880 843	3 3009	9 859	3141
5000 [2359]	1		' 						Ι	574	1587	599	1692	624 1	1799 6	648 19	1909 6	671 20	2021 69	693 21	2136 715	15 2253	53 736	6 2372	757	7 2494	4 777	2619	796	2746	814	2875 8	832 30	3007 849	9 3142	2 865	3279
5200 [2454]	Ι		' 					- 557	7 1553	3 583	1661	608	1771	632 1	1883 6	656 19	1998 6	679 21	2115 70	701 22	2235 723	23 2357	57 744	4 2482	32 764	4 2609	9 784	2739	802	2871	821	3006	838 31	3143 855	5 3283	3 871	3425
5400 [2548]			' 					- 566	3 1630		592 1742	617	1857	641 1	1975 6	664 20	2095 6	687 22	2218 70	709 23	2343 731	31 2470	70 751	1 2600		771 2732	2 791	2867	809	3005	827	3144 8	845 32	3287 861	1 3431	1 877	3579
5600 [2643]			- 			-		- 576	3 1714	1 601	601 1832	625	1952	649 2	2075 6	673 22	2200 6	695 23	2328 71	717 24	2458 738	38 2591	91 759	9 2726	6/179	9 286	2863 798	3003	816	3146	834	3291 8	851 34	3438 868	8 3588	8 884	3740
5800 [2737]	1	1	' 			- 559	9 1686	6 585	5 1807	7 610	610 1930	634	2055	658 2	2183 6	681 23	2313 7	703 24	2446 72	725 25	2582 746	46 2719	19 766	6 2860	30 786	6 3002	2 805	3148	823	3295	841	3445 8	858 3598	598 874	4 3753	3 890	3910
6000 [2831]			' 			- 569	9 1781	1 594	1907		619 2035	643	2166	667 2	2299 6	689 24	2435 7	712 25	2573 73	733 27	2713 754	54 2856	56 774	4 3001	11 794	4 3149	9 812	3300	830	3452	848	3608	865 37	3765 881	1 3926	6 896	4088
6200 [2926]	Ι		- 			- 578	8 1885	5 603	2016	2016 628	2149	652	2285	675 2	2423 6	698 25	2564 7	720 27	2707 74	741 28	2852 762	32 3001	01 782	2 3151	51 801	1 3304	4 820	3460	838	3618	855	3778 8	871 3941	941 887	7 4106	6 902	4274
6400 [3020]				- 56	562 1862	32 588	8 1996	6 613	613 2132	637	2270	661	2411	684 2	2555 7	707 27	2701 7	728 28	2849 74	749 30	3000 77	770 3153	53 790	0 3309	908 60	9 3467	7 827	3628	845	3791	862	3956 8	878 41	4124 894	4 4295	5 909	4468
6600 [3114]	1		' 	- 57	572 1976	6 597	7 2115	5 622	2256	2256 647 2400	2400	670	2546	693	2695 7	715 28	2846 7	737 29	2999 75	758 31	3155 77	778 331	3313 797	7 3474	4 816	6 3638	8 835	3804	852	3972	869	4143 8	885 43	4316 901	1 4491	1 915	4670
6800 [3209]	Ι		555 19	1957 58	582 2099	99 607	7 2242	12 632	2389	9 656	2537	679	2689	702 2	2842 7	724 29	2999 7.	745 31	3157 76	766 33	3318 78	786 3482	82 805	5 3648	18 824	4 3816	6 842	3987	859	4161	876	4337 8	892 45	4515 907	7 4696	9	Ι
7000 [3303]	Ι		566 20	2082 592	32 2228		617 2378	8 641	2529	9 665	665 2683	688	2839	711 2	2998 7	733 3-	3160 7	754 33	3323 77	774 34	3490 79	794 3658	58 813	3 3830	30 832	2 4003	3 850	4179	867	4358	883	4539 8	899 47	4722 914	4 4908	8	-
7200 [3398]			576 22	2215 602	12 2366	6 627	7 2521	1 651	651 2677	7 675	675 2836	698	2998	720	3162 7	742 33	3328 7	763 34	3497 78	783 36	3669 80	803 384	3843 821	1 4019	9 840	0 4198	8 857	4379	874	4563	890	4749	906 45	4938 921	1 5129	6	
NOTE: L-Drive left of bold line, M-Drive right of bold line, N-Drive right of double line.	ve left i	of bol	d line,	M-Driv	e right	of bol	Id line	, N-Dri	ive rig	ht of a	louble	line.																									

				9	761
				2	262
	8.5.4]	15H	56	7	826
S	5.0 [3728.5.4]	BK105H	1VP-56	3	860
				2	888
				١	920
				9	560
				5	593
æ	3.0 [2237.1]	BK105H	1VP-44	4	624
	3.0 [2	BK1	1VF	3	655
				2	689
				۲	716
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
4. Drive data shown is for horizontal airflow with dry coll. Add component resistance (below) to duct resistance to determine total External Static Pressure.

CFM TI Jei	4800 [2265]	5000 [2360]	5200 [2454]	5400 [2549]	5600 [2643]	5800 [2737]	6000 [2832]	6200 [2926]	6400 [3020]	6600 [3115]	6800 [3209]	7000 [3304]	7200 [3398]
[LL/8]					Res	Resistance —	- Inches of	f Water [kPa]	[Pa]				
Wet Ceil	0.03	0.04	0.05	0.06	0.06	0.07	0.08	0.09	0.10	0.10	0.11	0.12	0.13
	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
Downellow	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.08	0.08
	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]
Downflow Economizer	0.09	0.10	0.10	0.11	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
R.A. Damper Open	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
Horizontal Economizer	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.06
R.A. Damper Open	[00.0]	[00.0]	[00.0]	[0.00]	[00.0]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
Concentric Grill RXRN-AD80 or	0.21	0.25	0.28	0.32	0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64
RXRN-AD81 & Transition RXMC-CJ07	[0.05]	[0.06]	[0.07]	[0.08]	[0.09]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]
Dressing Dron MEDV 8	0.068	0.072	0.076	0.08	0.084	0.088	0.092	0.096	0.1	0.104	0.108	0.112	0.116
	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]
Descense Dran MEDV 13	0.009	0.015	0.021	0.028	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083
	[00.]	[00.]	[.00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS-15 TON [52.8 kW]

ACTUAL-CFM	4800	5000	5200	5400	5600	5800	6000	6200	6400	6600	6800	7000	7200
[r/s]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3398]
TOTAL MBTUH	0.97	76.0	86.0	0.98	0.99	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06.0	0.92	0.94	0.97	66.0	1.02	1.04	1.06	1.09	1.11	1.14	1.16
POWER KW	0.98	0.98	66.0	0.99	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible	n factor times gru	oss performance	data-resulting (sensible capacity canno	y cannot exceed	ot exceed total capacity.					[] Designa	Designates Metric Conversions	Conversions

20 TON [70.3 kW]-SIDEFLOW	
70.3 kWJ	
20 TON []	
-ORMANCE-	
RFLOW PERF	F CC
AIRF	

	Can	Canacity		Tons	20 Tons 170.3 kW1	N,																																Г
Air 															Ä	ternal	l Static	c Pres	-ans:	-Inch	es of	External Static Pressure-Inches of Water [kPa	[kPa]															
FIOW 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12]	0.1[02]	0.2[.(<u> 35</u>]	0.3[.0	7] 0	4 [.1	0 [0	5[.12	2] 0.(0.6 [.15]	0	7[.17	0.8	8 [.20]	0.9[[.22]	1.0	1.0[.25]	<u>-</u>	1.1 [.27]	1.2 [.30]		1.3[.	.32] 1	1.4[.3	[.35] 1	1.5 [.37]		1.6 [.40]	-	1.7 [.42]	1.8	[.45] 1.9		471	2.0[.5	.50]
	RPM W RPM W RPM W RPM W RPM W RPM W RP	3	RPM	N	Md8	N R	- Mq	V RP	N N	V RP	×	V RP	M	/ RPM	× N	RPM	×	RPM	≥	RPM	≥	RPM	×	RPM	N R	RPM	N	RPM W		RPM W	RPM	× ≥	RPM	≥	RPM	× ₹	RPM	≥
6400 [3020]		Ι		1	-	- 			-	- 62	628 2260	60 652	52 2378	78 675	5 2498	8 697	2621	719	2746	740	2873	762	3004	782 3	3136 8	802 3	3272 8	822 34	3410 8/	842 3550	50 860	0 3693	3 879	3838	897	3986	915 4-	4136
6600 [3114]		1	•		' 	' 		- 61	615 2247		638 2367		661 2489	39 684	4 2613	3 706	2740	728	2869	749	3001	770 3	3136	790 3	3273 8	810 3	3412 8	830 35	3555 84	849 3699	98 867	7 3846	6 886	3996	903	4148	921 43	4303
6800 [3209]		Ι	•			- 		- 62	625 2358		648 2482		671 2608	38 694	4 2736	6 715	2868	737	3001	758	3138	778	3277	798 3	3418 8	818 3	3562 8	837 37	3708 8!	856 3857	57 875	5 4008	8 893	4162	910	4319	927 44	4478
7000 [3303]	Ι	Ι	•			و: ا	612 2352		636 2477		659 2605		681 2735	35 703	3 2868	8 725	3004	746	3142	767	3282	787	3426	807 3	3571 8	826 3	3719 8	845 38	3870 8(864 4023	23 882	2 4179	900 6	4337	917	4498	934 46	4661
7200 [3398]		Ι			- 	- 6	623 24	2475 64	646 2605		669 2737		691 2872	72 713	3 3009	9 734	3149	755	3291	776	3436	796	3583	815 3	3733 8	834 3	3885 8	853 40	4040 8	871 4198	88 889	9 4358	8 907	4520	924	4685	940 48	4853
7400 [3492]		1			' 	ق ا	34 26	634 2607 657 2741	7 27		679 2877	77 701	11 3016	16 723	3 3158	8 744	3302	764	3448	784	3597	804	3749	824 3	3903 8	842 4	4060 8	861 42	4219 8	879 4381	31 897	7 4545	5 914	4712	930	4881	947 50	5053
7600 [3586]		Ι			622 2611		645 27	2747 66	667 2885		689 3026		711 3169	59 732	2 3315	5 753	3463	774	3614	794	3767	813 3	3923	832 4	4082 8	851 4	4243 8	869 44	4406 88	887 4572	72 904	4 4741	1 921	4912	937	5085	953 52	5261
7800 [3681]		Ι			633 2756 656 2895	756 6	56 25		678 3038		700 3183		721 3331	31 742	2 3481	1 763	3633	783	3788	803	3946	822	4106	841 4	4269 8	859 4	4434 8	877 46	4602 89	895 4772	2 912	2 4945	5 928	5120	944	5298	960 54	5478
8000 [3775]			622 2	767	622 2767 644 2908	308 6	67 30	667 3053 689 3199	19 31	99 71	711 3349	49 732	32 3500	00 752	2 3655	5 773	3812	793	3971	812	4133	831	4297	849 4	4464 8	868 4	4634 8	885 48	4806 90	902 4980	30 919	9 5157	7 936	5337	952	5519	967 57	5704
8200 [3869]	Ι	Ι	633 2923	923	656 3C	3069 6	678 32	3218 70	700 3369	369 721	1 3523	23 742	t2 3679	79 762	2 3837	7 783	3998	802	4162	821	4328	840	4497	858 4	4668 8	876 4	4842 8	894 50	5018 9	910 5197	927	7 5378	8 943	5562	959	5749	974 59	5937
8400 [3964] 622 2941 645 3089 667 3239 689 3392 711 3547 732	622 2	2941	645 3.	089	667 32	239 6	89 35	392 71	1 35.	47 73	37(3705 752	52 3865	55 773	3 4028	8 792	4194	812	4362	831	4532	849	4705	867 4	4881 8	885 5	5059 9	902 52	5239 9	919 5422	22 935	5 5608	8 951	5796	966	5987	981 61	6180
8600 [4058] 634 [3111] 657 [3263] 679 [3417] 701 [3574] 722 [3734]	634 5	3111	657 3.	263	679 34	417 7	01 35	574 72	2 37.	34 74	743 3896	96 763	33 4061	51 783	3 4228	8 802	4397	822	4570	840	4744	858	4922	876 5	5101 8	893 5	5284 9	910 54	5468 92	927 5656	66 943	3 5846	6 958	6038	974	6233	988 64	6430
8800 [4153] 647		3289	669 3.	445	669 3445 691 3604		12 37	73 73	13 39.	712 3765 733 3929 754	64 4095	95 774	74 4264	54 793	3 4436	6 813	4610	831	4786	850	4965	868	5147	885 5	5331 9	902 5	5517 9	919 57	5706 90	935 5898	951	1 6092	2 966	6289	981	6488	' 	Ι
9000 [4247] 659 3475 681 3635 702 3799 724 3964 744 4132 765 4303 784	659 3	3475	681 3.	635	702 37	7 99 7	24 35	364 74	14 41.	32 76	5 43(03 78	34 4476	76 804	4 4652	2 823	4830	841	5011	859	5194	877	5380	894 5	5568 9	911 5	5759 9	927 59	5952 94	943 6148	18 959	9 6347	7 974	6548	989	6751	- 	
9200 [4341] 671 3670 693 3835 714 4002 735 4172 756 4344 776 4519	671 3	3670	693 3.	835	714 4(7 7	35 41	172 75	6 43.	144 77	6 45	19 795	95 4697	97 814	4 4877	7 833	5059	851	5244	869	5432	887	5622	904 5	5814 9	920 6	6009	936 62	6207 9	952 6407	7 967	7 6610	0 982	6815	Ι		- 	
9400 [4436] 684 3873 705 4042 726 4214 747	684 5	3873	705 4	042	726 42	214 7	47 45	388 76	17 45	4388 767 4565 787	37 4744	44 806	06 4925	25 825	5 5110	0 843	5297	861	5486	879	5678	896	5872	913 6	6069	929 6	6268 9	945 64	6470 9(960 6675	5 975	5 6881	1 990	7091	Ι		' 	
9600 [4530] 696 4085 717 4258 738 4434 759 4612 779 4793 798	7 969	4085	717 4.	258	738 44	134 7	59 46	312 77	⁷ 9 47	93 79	38 4977	77 81	17 5163	53 836	6 5351	1 854	5542	872	5736	889	5932	906	6131	922 E	6332 9	938 6	6535 9	954 67	6742 90	969 6950	50 984	4 7162	2 —	Ι	Ι		- 	
NOTE: L-Drive left of bold line, M-Drive right of bold line.	rive left	t of bc	old line,	, M-D	rive riç	jht of	bold li	ne.																														

Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	urns Open 1 2	RPM 748 723
	5.0 [3;	BK	1/1	с	969
В	5.0 [3728.5.4]	BK130H	1VP-56	4	668
	4]			5	641
				9	614
				-	927
				2	902
S	7.5 [5592.7]	BK130H	1VP-71	e	875
	[92.7]	30H	-71	4	848
				5	820
				9	793
				-	994
T				2	967
(field insta	7.5 [5592.7]	BK120H	1VP-71	ю	940
(field installed only)	92.7]	HO	·71	4	912
				5	883
				9	853

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

	6400	6600	6800	0002	7200	7400	7600	7800	8000	8200	8400	8600	8800	0006	9200	9400	9600
CFM II /cl	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586] [3681]		[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
[[[-]]8]							Resisté	Resistance —	Inches (Inches of Water [kPa]	[kPa]						
	00.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07
	[00.]	[00.]	[00.]	[00.]	[00.]	[00.]	[00.]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]
Doundlour	0.06	0.06	0.07	0.08	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.22
	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]
Downflow Economizer	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30
R.A. Damper Open	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.05]	[90.]	[90.]	[90.]	[90.]	[.07]	[.07]	[.07]	[.07]
Horizontal Economizer	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.12	0.13
R.A. Damper Open	[.01]	[10.]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]
Concentric Grill RXRN-AD86	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.5	0.53	0.56	0.59	0.62	0.65	0.69	0.72	0.75
& Transition RXMC-CK08	[90.]	[.07]	[.08]	[.09]	[.09]	[.10]	[.11]	[.12]	[.12]	[.13]	[.14]	[.15]	[.15]	[.16]	[.17]	[.18]	[.19]
Broome Dree MEDV 0	0.1	0.104	0.108	0.112	0.116	0.12	0.124	0.128	0.132	0.136	0.14	0.144	0.148	0.152	0.156	0.16	0.164
	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]
Brossing Draw MEDV 12	0.058	0.065	0.071	0.077	0.083	0.089	0.095	0.102	0.108	0.114	0.12	0.126	0.132	0.138	0.145	0.151	0.157
	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]

AIRFLOW CORRECTION FACTORS-20 TON [70.3 kW]

ACTUAL-CFM	6400	6600	6800	7000	7200	7400	7600	7800	8000	8200	8400	8600	8800	0006	9200	9400	9600
[r/s]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
TOTAL MBH	0.97	0.97	0.98	0.98	0.99	0.99	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03	1.04	1.04
SENSIBLE MBH	0.88	06.0	0.92	0.94	0.96	0.97	0.99	1.01	1.03	1.05	1.07	1.09	1.10	1.12	1.14	1.16	1.18
POWER KW	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.02	1.02	1.02

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

5
S
Ч.
Π.
Щ.
Ŋ.
ᆂ
Ś
×
5
87.9
0
Z
5
Υ.
25 TON
Ñ
1
1
ANCE-
MANCE
MANCE -
ORMANCE-
FORMANCE -
RFORMANCE -
FORMANCE -
ERFORMANCE-
RFORMANCE -
ERFORMANCE-

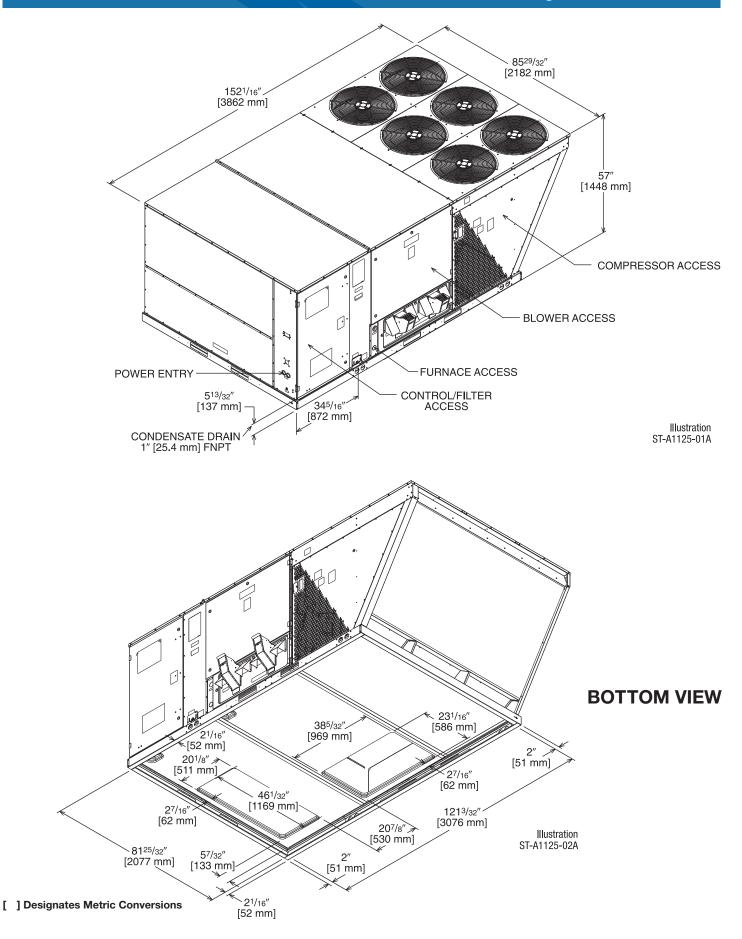
																																						ſ
	Cap	Capacity		Tons	25 Tons [87.9 kW]	KW]																																
															úľ	xterna	I Stati	ic Pre	External Static Pressure—Inches of Water [kPa]	-lnch	les of	Water	[kPa]															
	0.1 [.(02]	0.2 [.0	5] 0	.3 [.0.	7] 0.	4[.1(0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7	[.12]	0.0	[.15]	0.7	[.17]	0.8 [.20]		0.9[.22]		1.0 [.25]		1.1 [.27]		1.2 [.30]		1.3 [.32]		1.4 [.35]		1.5 [.37] 1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50]	1 1.	6 [.40	11.7	7 [.42]	1 1.8	[.45]	1.9[47] 2	.0[.5	Ξ
	RPM	W	RPM W RPM W RPM	V RI	N Mc	V RP	M.	W RPM W RPM W RPM	M M	RPN		W RPM	I W	RPM	Ν	RPM	N	RPM	W	RPM	W	RPM	W	RPM	W	RPM	W RI	RPM W	/ RPM	M	I RPM	MW		RPM W	RPM	WR	RPM W	-
8000 [3775]			 								1		Ι		I	Ι	I	807 4	4333	826 4	4498	845 4	4666	863 4	4837 8	882 5(5010 9	900 5187	37 918	8 5366	56 936		5549 954	5734	971	5922 9	988 6113	13
8200 [3869]			 							1			Ι		Ι	797	4331	816 4	4499	835 4	4670	854 4	4844	872 5	5021 8	890 52	5201 9	909 5383	33 927	7 5569	59 944	4 5757	7 962	5949	962 5949 979 6143		996 6340	9
8400 [3964]			 									1	Ι	Ι	Ι	806	4505	825 4	4679	844 4	4856	863 (5036	881 5	5219 8	899 54	5404 9	917 5593	935 935	5 5784	34 953	3 5979	026 6.	970 6176	987 6377		1004 6580	8
8600 [4058]			 								Ι		Ι	797	4514	816	4691	835 4	4871	854 5	5054	872 !	5240	890 5	5429 9	908 50	5621 9	926 5816	16 944	4 6013	13 961	1 6214	4 979	6417	966	3623 1	979 6417 996 6623 1012 6833	ŝ
8800 [4153]			 	 								Ι	Ι	807	4707	826	4890	845 5	5077	863 5	5266	882 !	5458	900 5	5653 9	918 58	5851 9	935 6051	51 953	3 6255	55 970	0 6462	2 987	6671	6671 1004 6883	3883 1	1021 7099	66
9000 [4247]				 							Ι	798	4727	817	4914	836	5103	855 5	5295	873 5	5490	891	5689	909 5	5890 9	927 6(6094 9.	944 6300	00 962	2 6510	0 979	9 672	3 996	6938	1013	7157 1	6723 996 6938 1013 7157 1029 7378	78
9200 [4341]	I			 							790 4751	1 809	4941	828	5133	846	5329	865	5527	883 5	5728	901	5932	919 6	6140	936 63	6349 9	954 6562	32 971	1 6778	78 988	8 699	7 1005	5 7218	1021	7443 1	6997 1005 7218 1021 7443 1038 7670	20
9400 [4436]							-				801 4972	2 820	5167	838	5366	857	5567	875 5	5772	893 5	5979	911 (6189	928 6	6403 9	946 60	6619 9	963 6837	37 980	0 7059	59 997	7 728	4 101	t 7512	1030	7742 1	7284 1014 7512 1030 7742 1046 7976	26
9600 [4530]		1	י 						793 5007		812 5205	5 830	5407	849	5612	867	5819	885	6030	903 6	6243	921 (6459	938 6	6679	956 69	6901 9	973 712	7126 990		7354 1006 7584 1023 7818 1039 8055 1055 8294	06 758	4 1023	3 7818	1039	3055 1	055 82	2
9800 [4624]			 	 	 				1 524	804 5247 823 5452 841	5452	2 841	5660	860	5871	878	6084	896 (6301	914 (6520	931 (6743	949 6	6968	996 7	7196 9	983 7427	666 23	_	7661 1016 7898 1032 8138 1048 8380 1064 8626	6 789	8 1032	2 8138	1048	3380 1	064 86	26
10000 [4719]				 		- 79	797 529	5293 815	815 5501		834 5712	2 852	5926	871	6143	889	6363	907 (6585	924 (6811	942	7039	959 7	7270	976 7	7504 9	993 77.	7742 1009		7982 1026 8224 1042 8470 1058 8719	26 822	4 1042	2 8470	1058 8			
10200 [4813]			 	82	789 5343		J8 55:	808 5554 827 5768 846 5985 864	7 576.	8 846	5985	5 864	6205	882	6428	006	6654	917 6	6882	935 7	7114	952	7348	969 7	7586 9	986 78	7826 10	1003 80	8069 1019		8315 1035 8564 1051 8816 1067	35 856	4 1051	8816	1067 (9071		
10400 [4908]			 	- 80	802 56	5611 82	820 582	5828 839	604	839 6048 857	6271	1 875	6497	893	6726	911	6958	928 7	7193	946 7	7430	963	7671	980 7	7914 9	.8 966	8161 10	1013 8410	10 1029	29 8662	32 104	15 891	1045 8917 1061	9175	Ι		 	
10600 [5002]	Ι	1	795 5672	72 8	814 58	5892 83	832 61	6115 851	634	851 6342 869 6571	6571	1 887	6803	905	7038	922	7276	940	7516	957	7760	974	8007	990 8	8256 1007		8508 10	1023 87	8764 1040	40 9022		1056 9283	3 1071	9547	Ι			
10800 [5096] 789 5736 807 5960 826 6186	789 5	5736	807 55	60 8.	26 61		15 64	845 6416 863 6648 881 6883	§ 664.	8 881	6883	3 899	7121	916	7362	934	7606	951	7853	968 8	8103	985	8355 1	1001 8	8611 1018	018 8	8869 10	1034 9131	31 10	1050 9395		1066 9662	2				 	
11000 [5191]	801	6031 8	820 6261	61 8.	839 64	6494 85	857 67:	6729 875 6967 893 7209 910	696	7 893	7205	910	7453	928	7700	945	7950	962 8	8203	979 8	8458	966	8717 1	1012 8	8979 1029	029 92	9243 10	1045 9511	11 1061	31 9781	31				Ι			
11200 [5285] 814 6340 833 6575 851	814 6	3340	833 65	75 8;	51 68	6814 86	39 70	869 7056 887 7300 905 7547 923	730.	0 905	7547	7 923	7797	940	8051	957	8307	974 8	8566	991 8	8827	1007	9092 1	1024 9	9360 1040	040 9(9630 10	1056 9904	1071	71 10180	80 —			Ι	Ι		-	
11400 [5379] 827	827 6	3661	6661 846 6903 864 7148	03 81	64 71		32 73	882 7395 900 7646 917 7899 935	764.	6 917	7895	935	8155	952	8414	969	8677	986	8942 1002		9209	1019	9480 1	1035 9	9754 1051 10031	051 10	031 10	1067 10310	10 -	-					Ι		-	
11600 [5474] 841 6996 859 7244 877 7494	841 6	966	859 72	44 8	77 74	94 85	12 21	895 7748 912 8004 930 8264 947	800	4 930	8264	1 947	8526	964	8791	981	9060 998		9331 1014 9605 1030 9881	1014	9605	1030	9881	1046 1	1046 10161 1062 10444	062 10				-				Ι	Ι			
[11800 [5568]] 854 [7343] 872 [7597] 890 [7854] 908 [8114 <u>] 925 [8376</u>] 943 [8642] 960	854 7	7343	872 75	97 8:	90 78	54 90	18 81	14 925	5 837.	6 943	8642	2 960	8910	977	9181	993	9456	1010	9733	1026 1	10013	1042	9456 1010 9733 1026 10013 1042 10296 1058 10582	1058 1	0582		- -	 	-	-	-	-			I		-	1
12000 [5663] 868 7704 886 7964 903 8227	868 7	7704	886 75	164 9t	03 82	27 92	21 84	921 8493 938 8761 955 9033 972	3 876	1 955	9035	3 972	9307	989	9585	1006	9865	1022 1	0148	1038 1	10434	1054 1	9865 1022 10148 1038 10434 1054 10723 1070 11015	1070	1015		' 								Ι			1
NOTE-1 - Drive left of hold line M-Drive right of hold line	ve left o	of hold	1 Ine	M-Driv	ve rint	nt of h	old lir	q																														
NOIL. L U	עם והיוי י			2	1911 21	2		5																														

				9	929
				2	954
	[0.76	Н	75	4	987
S	10 [7457.0]	BK120H	1VP-75	з	1010
				2	1041
				-	1067
				9	791
				5	818
н	7.5 [5592.7]	BK130H	1VP-71	4	843
д	7.5 [59	BK1	1VP	e	870
				2	894
				-	922
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

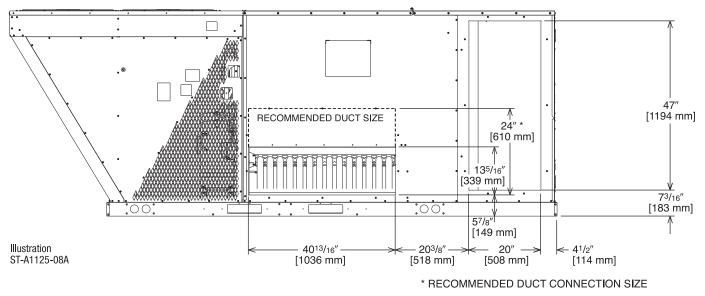
NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-25 TON [87.9 kW]

	8000	8400	8800	9200	9600	10000	10400	10800	10000 10400 10800 11200 11600		12000
CFM TI /o1	[3775]	[3964] [4153]	[4153]	[4341]	[4341] [4530] [4719] [4908]	[4719]	[4908]	[5096]	[5096] [5285] [5474]		[5663]
[L/3]				Resist	Resistance — Inches of Water [kPa]	Inches (of Wateı	· [kPa]			
Met Ceil	0.07	0.09	0.10	0.12	0.13	0.15	0.16	0.18	0.19	0.21	0.22
	[.02]	[.02]	[.02]	[.03]	[.03]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]
Downflow	0.12	0.14	0.16	0.19	0.22	0.25	0.29	0.33	0.37	0.42	0.46
	[:03]	[:03]	[.04]	[.05]	[.05]	[90.]	[.07]	[80.]	[60.]	[.10]	[11]
Downflow Economizer	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.37	0.39	0.41	0.44
R.A. Damper Open	[.05]	[90.]	[90.]	[.07]	[.07]	[.08]	[.08]	[60.]	[.10]	[.10]	[.11]
Horizontal Economizer	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
R.A. Damper Open	[.02]	[.02]	[:03]	[.03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.04]	[:05]
Concentric Grill RXRN-AD88	0.17	0.23	0.30	0.36	0.43	0.50	0.56	0.63	0.69	0.76	0.82
& Transition RXMC-CL09	[.04]	[90.]	[.07]	[60.]	[.11]	[.12]	[.14]	[.16]	[.17]	[.19]	[.20]
Descense Desn MEDV 9	0.132	0.14	0.148	0.156	0.164	0.172	0.18	0.188	\sim	0.204	0.212
	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[:05]
Descense Dess MEBV 12	0.108	0.12	0.132	0.145	0.157	0.169	0.182	0.194	0.206	0.219	0.231
רופססמום חוטף ואבתע וס	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[:05]	[90.]

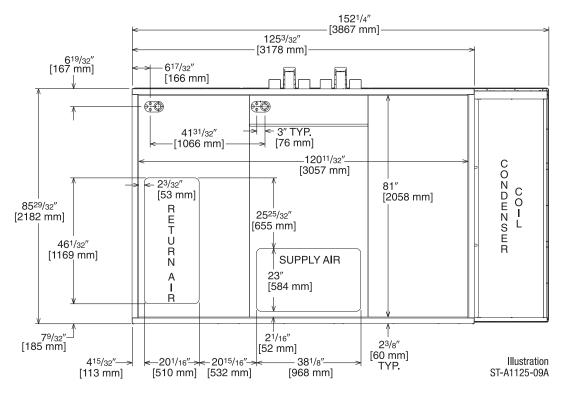

AIRFLOW CORRECTION FACTORS – 25 TON [87.9 kW]

							1	I			
ACTUAL—CFM	8000	8400	0088	9200	0096	10000	10400	10800	11200	11600	12000
[r /s]	[3775]	[3964]	[4153]	[4341]	[4530]	[4719]	[4908]	[5096]	[5285]	[5474]	[5663]
TOTAL MBTUH	26.0	0.98	66'0	0.99	1.00	1.01	1.02	1.03	1.03	1.04	1.05
SENSIBLE MBTUH	0.89	0.92	0.95	0.98	1.01	1.04	1.08	1.11	1.14	1.17	1.20
POWER KW	0.99	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.02

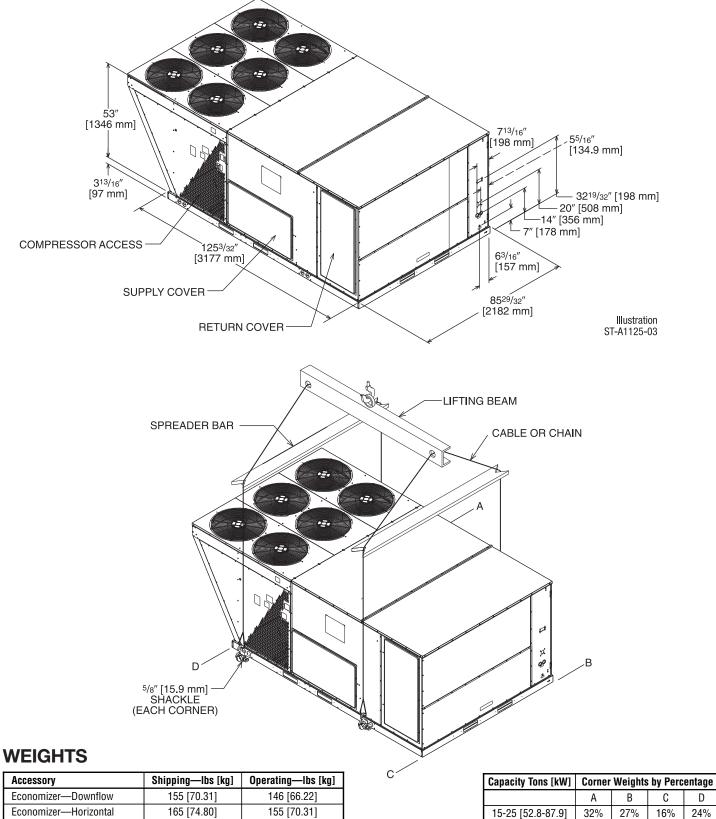

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

		ELECTRIC	al data – r	KNL- SERIES			
		G180CR	G180CS	G180DR	G180DS	G240CR	G240CS
_	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	187-253
atio	Volts	208/230	208/230	460	460	208/230	208/230
Ë	Minimum Circuit Ampacity	78/78	81/81	38	40	101/101	109/109
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45	110/110	125/125
	Maximum Overcurrent Protection Device Size	100/100	100/100	45	50	125/125	125/125
	No.	2	2	2	2	2	2
	Volts	200/230	200/230	460	460	200/230	200/230
	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
l li	HP, Compressor 1	7	7	7	7	10	10
Compressor Motor	Amps (RLA), Comp. 1	25/25	25/25	12.2	12.2	33.3/33.3	33.3/33.3
	Amps (LRA), Comp. 1	164/164	164/164	100	100	239/239	239/239
ŭ	HP, Compressor 2	7	7	7	7	7 1/2	7 1/2
Condenser Motor	Amps (RLA), Comp. 2	25/25	25/25	12.2	12.2	29.5/29.5	29.5/29.5
	Amps (LRA), Comp. 2	164/164	164/164	100	100	195/195	195/195
	No.	4	4	4	4	6	6
	Volts	208/230	208/230	460	460	208/230	208/230
er N	Phase	1	1	1	1	1	1
ens	HP	1/3	1/3	1/3	1/3	1/3	1/3
puo	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	2.4/2.4	2.4/2.4
О	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	4.7/4.7	4.7/4.7
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	208/230	208/230
tor	Phase	3	3	3	3	3	3
Evaporator Fan	HP	3	5	3	5	5	7 1/2
Eval	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6	14.7/14.7	23.1/23.1
	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3	82.6/82.6	136/136

		ELECTRIC	al data – r	KNL- SERIES			
		G240DR	G240DS	G300CR	G300CS	G300DR	G300DS
=	Unit Operating Voltage Range	414-506	414-506	187-253	187-253	414-506	414-506
atio	Volts	460	460	208/230	208/230	460	460
Ë.	Minimum Circuit Ampacity	52	56	147/147	149/149	60	63
Unit Information	Minimum Overcurrent Protection Device Size	60	60	175/175	175/175	70	70
>	Maximum Overcurrent Protection Device Size	60	70	175/175	175/175	70	80
	No.	2	2	2	2	2	2
ſ	Volts	460	460	200/240	200/240	460	460
-	Phase	3	3	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450	3450	3450
Sor	HP, Compressor 1	10	10	11 1/2	11 1/2	11 1/2	11 1/2
ress	Amps (RLA), Comp. 1	17.9	17.9	48.1/48.1	48.1/48.1	18.6	18.6
du	Amps (LRA), Comp. 1	125	125	245/245	245/245	125	125
ŭ	HP, Compressor 2	7 1/2	7 1/2	11 1/2	11 1/2	11 1/2	11 1/2
Condenser Motor	Amps (RLA), Comp. 2	14.7	14.7	48.1/48.1	48.1/48.1	18.6	18.6
	Amps (LRA), Comp. 2	95	95	245/245	245/245	125	125
	No.	6	6	6	6	6	6
	Volts	460	460	208/230	208/230	460	460
er N	Phase	1	1	1	1	1	1
ens	HP	1/3	1/3	1/3	1/3	1/3	1/3
puo	Amps (FLA, each)	1.4	1.4	2.4/2.4	2/2	1.4	1.4
3	Amps (LRA, each)	2.4	2.4	4.7/4.7	3.9/3.9	2.4	2.4
	No.	1	1	1	1	1	1
Fan	Volts	460	460	208/230	208/230	460	460
Itor	Phase	3	3	3	3	3	3
Evaporator Fan	HP	5	7 1/2	7 1/2	10	7 1/2	10
Eva	Amps (FLA, each)	6.6	9.6	24.2/24.2	28.5/28.5	9.6	12.5
	Amps (LRA, each)	46.3	67	136/136	178/178	67	74.6

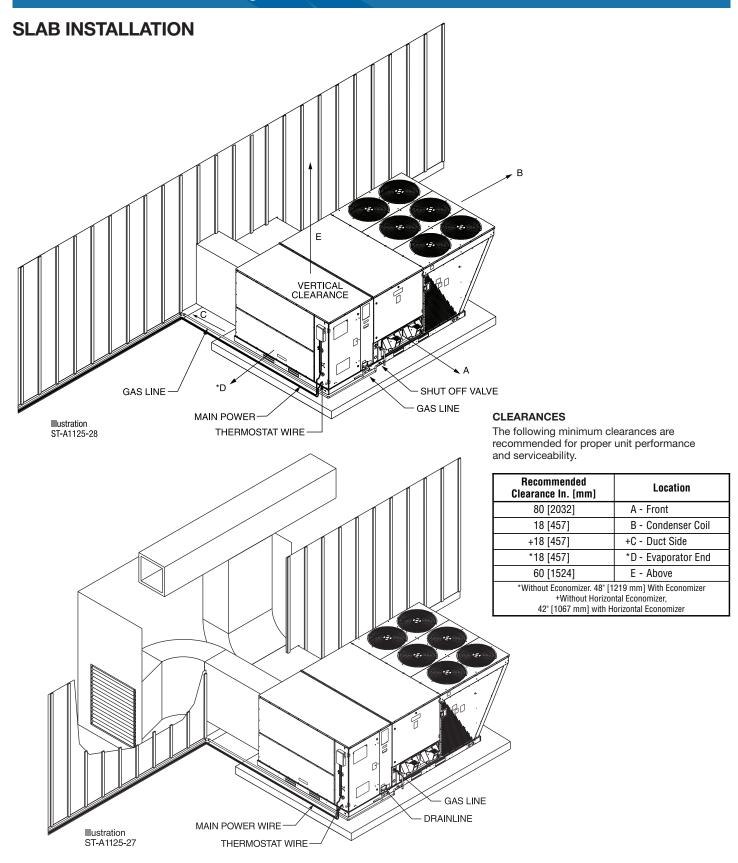


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS


DUCT SIDE VIEW (REAR)

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

BOTTOM VIEW


UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

ACCESSOLY	Sillippilig—Ins [kg]	Operating—ins [ky]
Economizer—Downflow	155 [70.31]	146 [66.22]
Economizer—Horizontal	165 [74.80]	155 [70.31]
Fresh Air Damper (Manual)	51 [23.13]	40 [18.14]
Fresh Air Damper (Motorized)	46 [20.87]	35 [15.88]
Roof Curb 14"	170 [77.11]	164 [74.39]

[] Designates Metric Conversions

Corner weights measured at base of unit.

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-01RGDAM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD-01RGDBM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV04	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-01RGHAM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per Compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Room Humidity Sensor	RHC-ZNS4	1 [0.5]+	1 [0.5]+	No*
Room Temperature and Relative Humidity Sensor	RHC-ZNS5	1 [0.5]+	1 [0.5]+	No*
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes
MERV 8 Filter	RXMF-M08A22520	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A22520	2 [0.9]	1 [0.45]	No

*Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection. +Do not use on or RKNL-C 300C voltage models.

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON

RHC-ZNS1

RHC-ZNS2

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

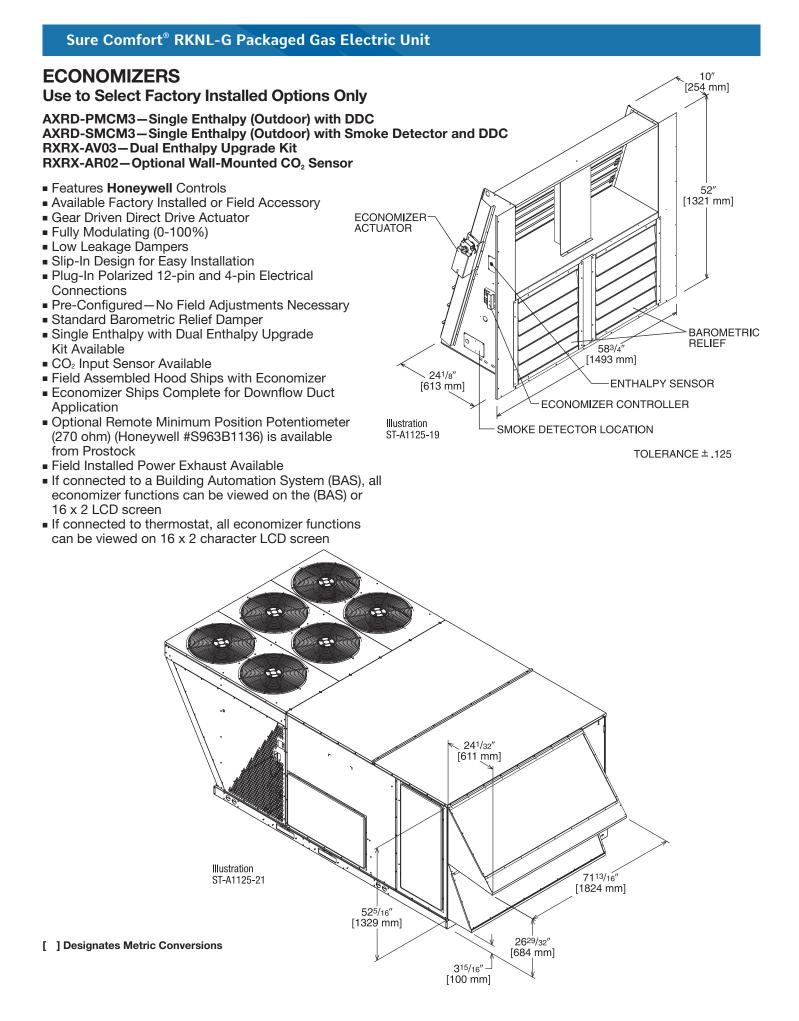
ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM HUMIDITY SENSOR Transmits room relative humidity to DDC System. RHC-ZNS4

ROOM TEMPERATURE AND RELATIVE HUMIDITY SENSORRHC-ZNS5Transmits room temperature and relative humidity to DDC System.

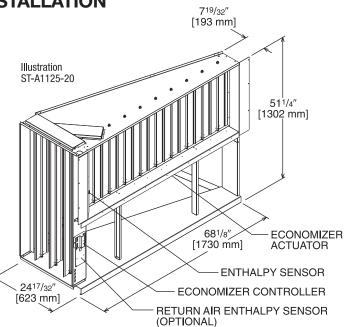
COMMUNICATION CARDS Field Installed


BACnet® COMMUNICATION CARD RXRX-AY01

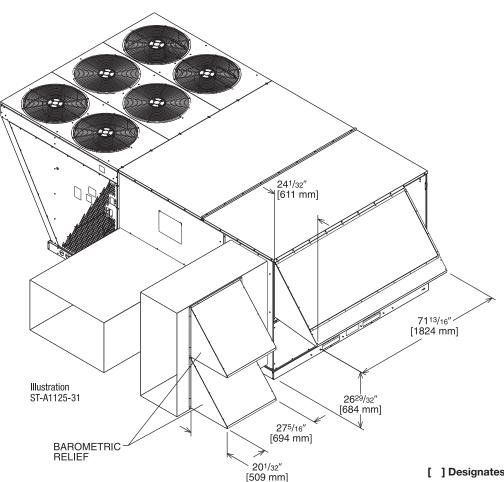
The field installed BACnet[®] Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet[®] Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

The field installed LonWorks[®] Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

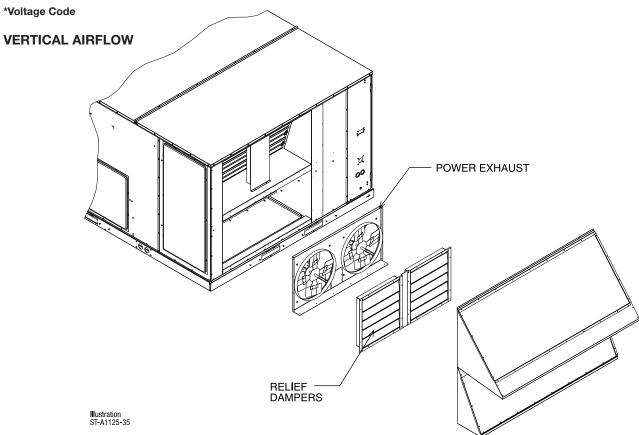


ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION


Field Installed Only

AXRD-RMCM3—Single Enthalpy (Outdoor) with DDC RXRX-AV03—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2
- LCD screen
 If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



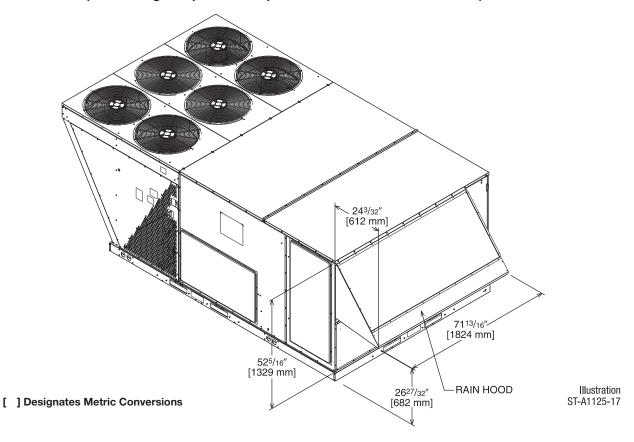
TOLERANCE ± .125

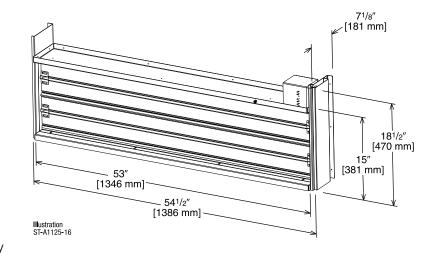
POWER EXHAUST KIT FOR AXRD-PMCM3 & SMCM3 ECONOMIZERS

RXRX-BGF05 (C or D)

Model No.	No.	Volts	Phase	HP	Low Spe	ed	High Spee	d 1)	FLA	LRA
WOUEI NO.	of Fans	VUIIS	FIIdSE	(ea.)	CFM [L/s] 2	RPM	CFM [L/s] 2	RPM	(ea.)	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4

NOTES: Power exhaust is factory set on high speed motor tap.

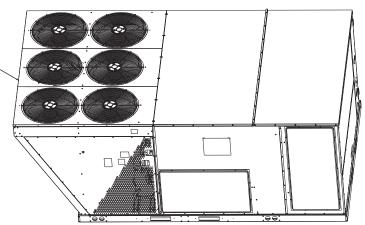

2 CFM is per fan at 0" w.c. external static pressure.

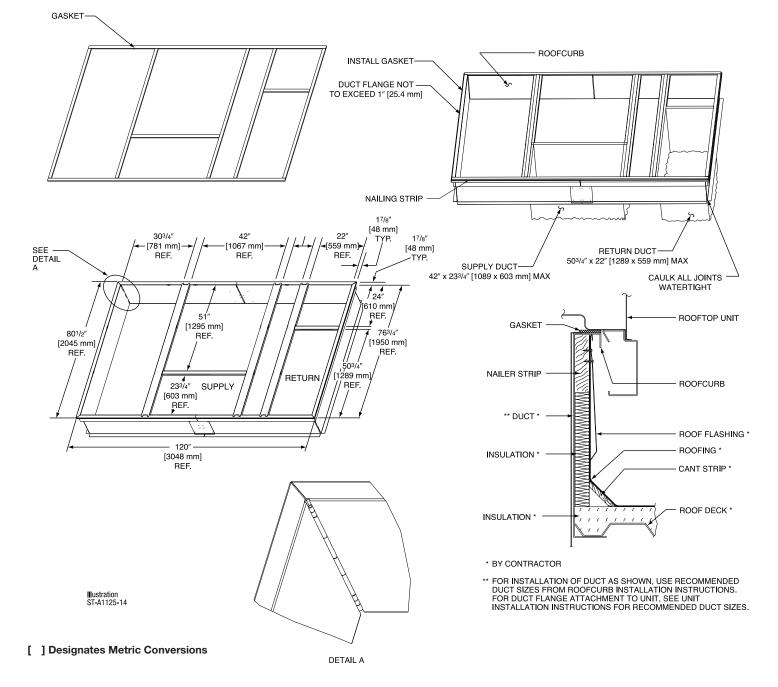

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW03 (Motor Kit for AXRF-KFA1) RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)

- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

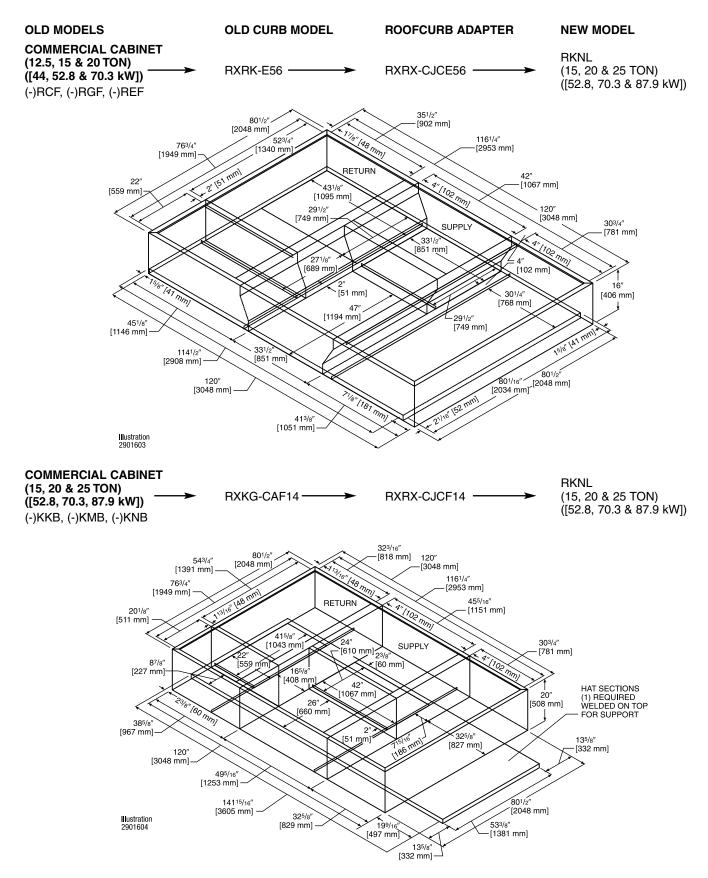
AXRF-KFA1 (Manual) RXRX-AW03 (Motorized damper kit for manual fresh air damper) RXRX-AW05 (Modulating damper kit with position feedback for AXRF-KFA1)

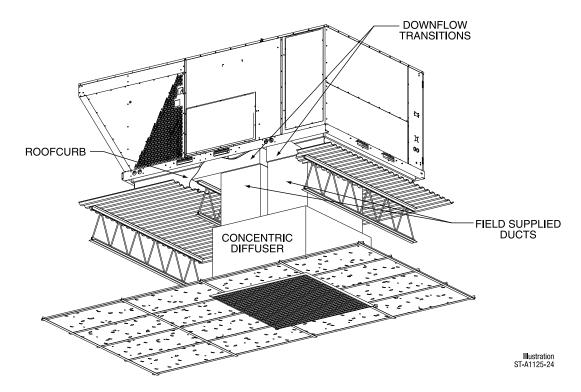



ROOFCURBS (Full Perimeter)

- Sure Comfort's new roofcurb designs can be utilized on 15, 20 and 25 ton [52.8, 70.3 and 87.9 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

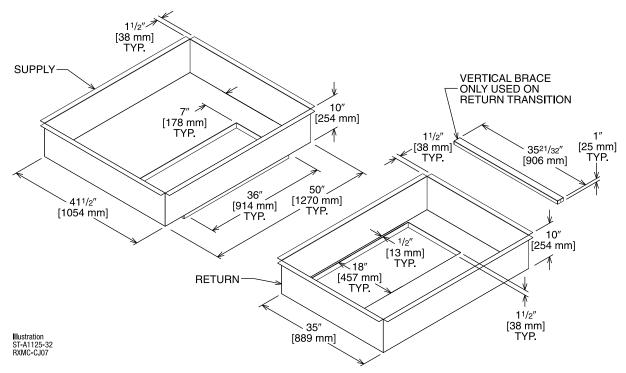
ROOFCURB ASSEMBLY


TYPICAL INSTALLATION


UNIT-

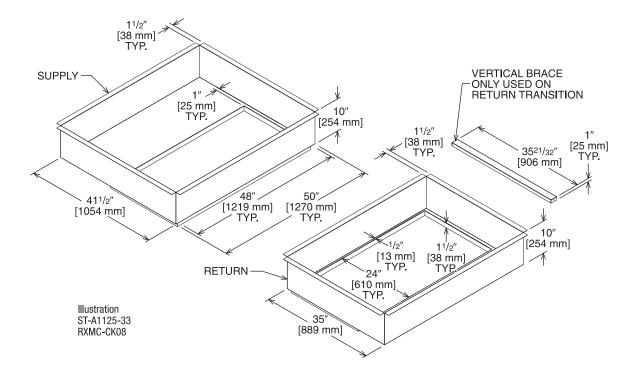
ROOFCURB ADAPTER

^[] Designates Metric Conversions

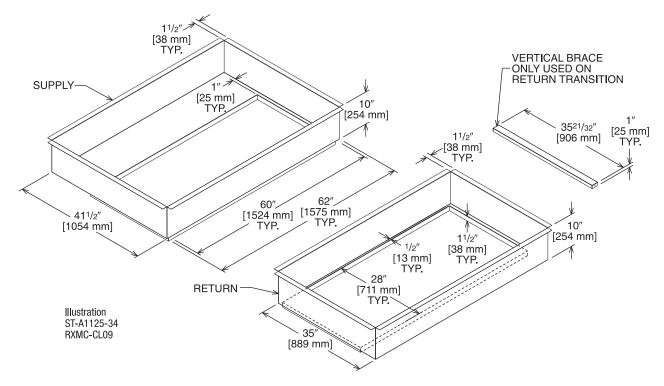

CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

RXMC-CJ07 (15 Ton) [52.8 kW]


 Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers

DOWNFLOW TRANSITION DRAWINGS (Cont.)


RXMC-CK08 (20 Ton) [70.3 kW]

Used with RXRN-AD86 Concentric Diffusers

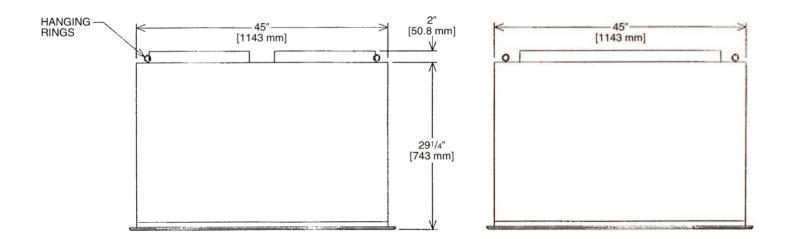
RXMC-CL09 (25 Ton) [87.9 kW]

Used with RXRN-AD88 Concentric Diffusers

CONCENTRIC DIFFUSER 475/8" **RXRN-AD80 SERIES** [1210 mm] 15 TON [52.8 kW] FLUSH 41/2" Ο [114.3 mm] All aluminum diffuser with aluminum return air eggcrate. SUPPLY Built-in anti-sweat gasket. Molded fiberglass supports. Built-in hanging supports. 36" Diffuser box constructed of sheetmetal [914 mm] insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner.

4^{1/2"} [114.3 mm]

Λ


21/4"

[57.2 mm]

C

18"

[457.2 mm]

CONCENTRIC DIFFUSER SPECIFICATIONS

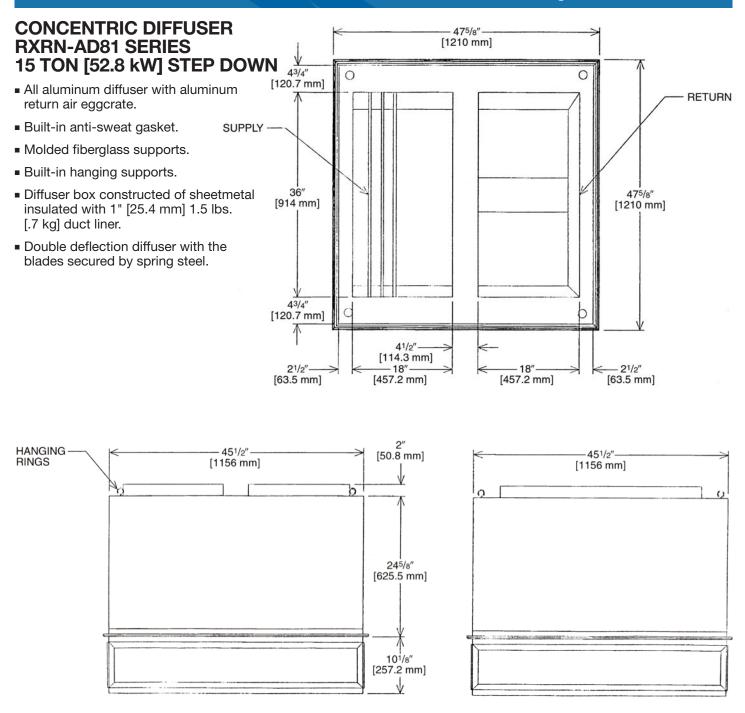
PART NUMBER	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	5600 [2643]	0.36	28-37	1000	2082
RXRN-AD80	5800 [2737]	0.39	29-38	1036	2156
	6000 [2832]	0.42	40-50	1071	2230
	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

[] Designates Metric Conversions

0

18"

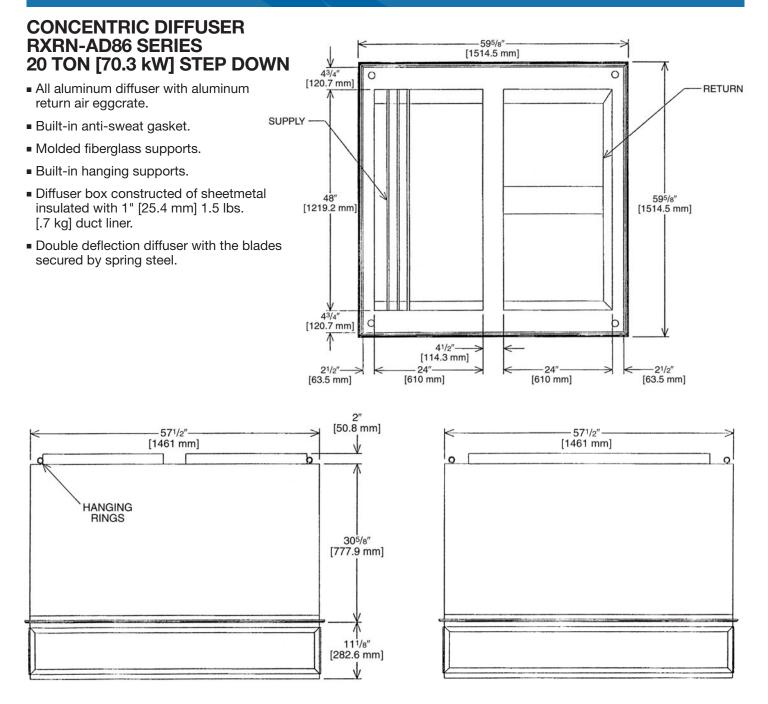
[457.2 mm]


RETURN

475/8"

[1210 mm]

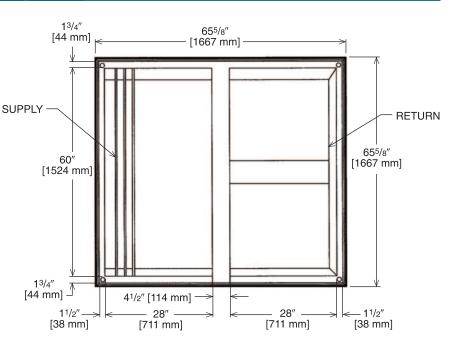
-21/4"

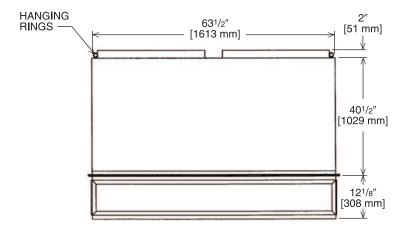

[57.2 mm]

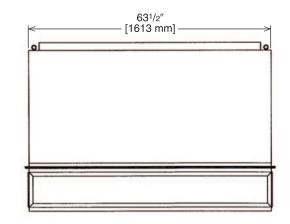
CONCENTRIC DIFFUSER SPECIFICATIONS

PART NUMBER	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET VELOCITY
	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
RXRN-AD81	6000 [2832]	0.42	44-54	1022	1022
	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124

[] Designates Metric Conversions




CONCENTRIC DIFFUSER SPECIFICATIONS


PART NUMBER	CFM [L/s]	STATIC PRESSURE	THROW FEET	NECK Velocity	JET VELOCITY
	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
RXRN-AD86	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010

CONCENTRIC DIFFUSER RXRN-AD88 SERIES 25 TON [87.9 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART NUMBER	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET VELOCITY
	10000 [4719]	0.51	46-54	907	907
	10500 [4955]	0.58	50-58	953	953
	11000 [5191]	0.65	53-61	998	998
RXRN-AD88	11500 [5427]	0.73	55-64	1043	1043
	12000 [5663]	0.82	58-67	1089	1089
-	12500 [5898]	0.91	61-71	1134	1134
	13000 [6134]	1.00	64-74	1179	1179

Guide Specifications RKNL-G180 thru G300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute. <u>www.csinet.org</u>.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

- 23 06 80.13 Decentralized Unitary HVAC Equipment Schedule
- 23 06 80.13.A. Rooftop unit schedule
 - 1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

- 23 07 16.13 Decentralized, Rooftop Units:
 - 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
 - 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

- 23 09 13.23 Sensors and Transmitters
- 23 09 13.23.A. Thermostats
 - 1. Thermostat must
 - a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
 - b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

- 23 09 23.13 Decentralized, Rooftop Units:
- 23 09 23.13.A. RTU-C controller
 - 1. Shall be ASHRAE 62-2019 compliant.
 - 2. Shall accept 18-32VAC input power.
 - 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
 - 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
 - 5. Shall accept a CO₂ sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
 - 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust/ occupied.
 - 7. Unit shall provide surge protection for the controller through a circuit breaker.
 - 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
 - 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
 - 10. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
 - 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
 - 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
 - 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
 - 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.
- 23 09 23.13.B. Open protocol, direct digital controller:
 - 1. Shall be ASHRAE 62-2019 compliant.
 - 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
 - 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
 - 4. Shall have either a field installed BACnet[®] plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks[™] plug-in communications card.
 - 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
 - 6. The LonWorks[™] plug in communication card shall include the Echelon processor required for all Lon applications.
 - 7. Shall allow access of up sto 62 network variables (SNVT). Shall be compatible with all open controllers
 - 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
 - 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
 - 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections.
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

- 23 40 13.13.A. Standard filter section shall
 - 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
 - 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
 - 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
 - 4. Filters shall be accessible through an access panel as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

- 23 81 19.13.A. General
 - 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
 - 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
 - 3. Unit shall use environmentally safe, R-410A refrigerant.
 - 4. Unit shall be installed in accordance with the manufacturer's instructions.
 - 5. Unit must be selected and installed in compliance with local, state, and federal codes.
- 23 81 19.13.B. Quality Assurance
 - 1. Unit meets ASHRAE 90.1-2019 minimum efficiency requirements.
 - 2. Unit shall be rated in accordance with AHRI Standards 210 and 360.
 - 3. Unit shall be designed to conform to ASHRAE 15, 2019.
 - 4. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
 - 5. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
 - 6. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
 - 7. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
 - 8. Unit shall be designed in accordance with ISO 9001:2015, and shall be manufactured in a facility registered by ISO 9001:2015.
 - 9. Roof curb shall be designed to conform to NRCA Standards.
 - 10. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
 - 11. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
 - 12. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.
- 23 81 19.13.C. Delivery, Storage, and Handling
 - 1. Unit shall be stored and handled per manufacturer's recommendations.
 - 2. Lifted by crane requires either shipping top panel or spreader bars.
 - 3. Unit shall only be stored or positioned in the upright position.
- 23 81 19.13.E. Project Conditions
- 1. As specified in the contract.
- 23 81 19.13.F. Operating Characteristics
 - 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
 - Compressor with standard controls shall be capable of operation down to 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
 - 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
 - 4. Unit shall be factory configured for vertical supply & return configurations.
 - 5. Unit shall be field convertible from vertical to horizontal configuration.
- 23 81 19.13.G. Electrical Requirements
 - 1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.
- 23 81 19.13.H. Unit Cabinet
 - 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
 - 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F / 16°C): 60, Hardness: H-2H Pencil hardness.
 - 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standard 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb. density, flexible fiberglass insulation, aluminum foil-face coated on the air side.
 - 4. Base of unit shall have locations for thru-the-base gas and electrical connections (factory installed or field installed), standard.
 - 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.

- c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection through the side of the drain pan. Connection shall be made per manufacturer's recommendations.
- 7. Gas Connections:
 - a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 8. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor and gas components (where applicable), shall have 1/4 turn latches.
- 23 81 19.13.I. Gas Heat
 - 1. General
 - a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
 - b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
 - c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
 - d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
 - 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor.
 - a. IFC board shall notify users of fault using an LED (light-emitting diode).
 - 3. Standard Heat Exchanger construction
 - a. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge aluminum coated steel for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
 - 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes and vestibule plate.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
 - 5. Induced draft combustion motors and blowers
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.

- b. Shall be made from steel with a corrosion-resistant finish.
- c. Shall have permanently lubricated sealed bearings.
- d. Shall have inherent thermal overload protection.
- e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psi.
- 23 81 19.13.K. Refrigerant Components
 - 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valves (TXV) with orifice type distributor.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.
 - 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - c. Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.
 - d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - e. Compressor shall be factory mounted on rubber grommets.
 - f. Compressor motors shall have internal line break thermal and current overload protection.
 - g. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.
- 23 81 19.13.M. Evaporator Fan and Motor
 - 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
 - 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.
- 23 81 19.13.N. Condenser Fans and Motors
 - 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
 - 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air. The barometric relief damper shall include seals, hardware and hoods to relieve building pressure. Damper shall gravity close upon unit shut down.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. An outdoor single-enthalpy sensor shall be provided as standard. Outdoor air enthalpy set point shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - m. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - n. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
- 2. Two-Position Damper
 - a. Damper shall be a Two-Position Damper. Damper travel shall be from the full closed position to the field adjustable %open setpoint.
 - b. Damper shall include adjustable damper travel from 25% to 100% (full open).
 - c. Damper shall include single or dual blade, gear driven damper and actuator motor.
 - d. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - e. Damper will admit up to 100% outdoor air for applicable rooftop units.
 - f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
 - g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
 - h. Outside air hood shall include aluminum water entrainment filter.
- 3. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Liquid Propane (LP) Conversion Kit
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.
 - e. Non-Powered convenience outlet.
 - f. Outlet shall be powered from a separate 115-120v power source.
 - g. A transformer shall not be included.
 - h. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.

- i. Outlet shall include 15 amp GFI receptacle.
- j. Outlet shall be accessible from outside the unit.
- 7. Flue Discharge Deflector:
 - a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
 - b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.
- 8. Thru-the-Base Connectors:
 - a. Kits shall provide connectors to permit gas and electrical connections to be brought to the unit through the unit basepan.
- 9. Propeller Power Exhaust:
 - a. Power exhaust shall be used in conjunction with an integrated economizer.
 - b. Independent modules for vertical or horizontal return configurations shall be available.
 - c. Horizontal power exhaust is shall be mounted in return ductwork.
 - d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.
- 10. Roof Curbs (Vertical):
 - a. Full perimeter roof curb with exhaust capability providing separate airstreams for energy recovery from the exhaust air without supply air contamination.
 - b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
- 11. Universal Gas Conversion Kit:
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft (90-2134m) elevation with liquefied propane.
- 12. Outdoor Air Enthalpy Sensor:
 - a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.
- 13. Return Air Enthalpy Sensor:
 - a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.
- 14. Indoor Air Quality (CO2) Sensor:
 - a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 - b. The IAQ sensor shall be available in wall mount with LED display. The set point shall have adjustment capability.
- 15. Smoke detectors:
 - a. Shall be a Four-Wire Controller and Detector.
 - b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
 - c. Shall use magnet-activated test/reset sensor switches.
 - d. Shall have tool-less connection terminal access.
 - e. Shall have a recessed momentary switch for testing and resetting the detector.
 - f. Controller shall include:
 - i. One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel.
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

26 29 23.12. Adjustable Frequency Drive

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Sure Comfort[®] will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor

3 Phase, Commercial ApplicationsFive (5) Years Parts

3 Phase, Commercial Applications.....One (1) Year

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

Factory Standard Heat Exchanger

3 Phase, Commercial ApplicationsTen (10) Years
Stainless Steel Heat Exchanger
3 Phase, Commercial ApplicationsTwenty (20) Years

Sure Comfort[®]

5600 Old Greenwood Road, Fort Smith, AR 72908

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.