

MODEL: RGEC Packaged Gas Electric Units

FORM NO. RRR-880 REV. 1

Commercial Renaissance[™] Line Packaged Gas Electric Units

RGEC Series

- Cooling Efficiencies up to:
- RGECYC 3-5 Tons: 12.0 EER2 / 16.2 SEER2
- RGECYB 3-5 Tons: 10.6 EER2 / 13.4 SEER2
- RGECYB 6 Tons: 11.0 EER / 14.6 IEER
- Nominal Sizes: 3, 4, 5 & 6 Tons [10.6, 14.0, 17.6 & 21.1 kW]
- Cooling Capacities: 34.2k Btu/h 72.0k Btu/h
- Refrigerant Type: R-454B
- ASHRAE 90.1 2022 Compliant Models

TABLE OF CONTENTS

Unit Features & Benefits	3-11
Model Number Identification	12
Options	
Selection Procedures	
General Data	
General Data Notes	
Weighted Sound Power	
Heating Performance Data	
Cooling Performance	
Gross Systems Performance Data	
Airflow Performance Data	
Electrical Data	
A2L Refrigerant Installation Safety Data	57
Dimensional Data	
Field-Installed Accessories	61-89
Guide Specifications	
Limited Warranty	

RGEC STANDARD FEATURES INCLUDE:

- Factory charged with R-454B refrigerant
- Factory installed refrigerant leak detection system
- · Wired and run tested
- Scroll compressors with internal line break overload and high pressure protection
- Convertible airflow vertical down flow or horizontal side flow
- Forkable base rails for easy handling and lifting
- Cooling operation up to 125°F ambient
- Two-stage gas heat input with direct spark ignition system, solid state furnace controls, and optimized induced draft combustion
- MicroChannel evaporator and condenser coil
- ServiceSmart package includes: Qwik-Change Flex-Fit Rack Qwik-Slide Blower Assembly Qwik-Clean Drain Pan
- · Overflow condensate sensor
- Diagnostics with Dual 7-Segment LED Display to meet code compliance

- One-piece top cover and base pan with drawn supply and return opening
- Two-piece control door
- ¼ turn fasteners on filter access door
- · Color-coded and labeled wiring
- External lockable gauge ports
- TXV refrigerant metering system
- Solid-core liquid line filter drier
- High pressure and low pressure/loss of charge protection with built-in Smart Logic
- Insulation encapsulated throughout entire unit
- 3-5 Ton RGECYC Models and 6 Ton RGECYB Models include a single 2-Stage compressor
- 3-5 Ton RGECYB Models include a single-stage compressor
- MERV 8 & MERV 13 filters are available as a field-installed accessory
- Standard Modbus interface

For 2025, the Environmental Protection Agency (EPA) has set a global warming potential (GWP) limit of 700 for refrigerant used in most heating and cooling systems. This new requirement will result in a 78%^{*} lower GWP than previous-generation refrigerants—with only minimal changes to system installation. For us, this is another step toward our ongoing sustainability goal of reducing greenhouse gas emissions, while still delivering an exceptional level of energy efficient, dependable comfort.

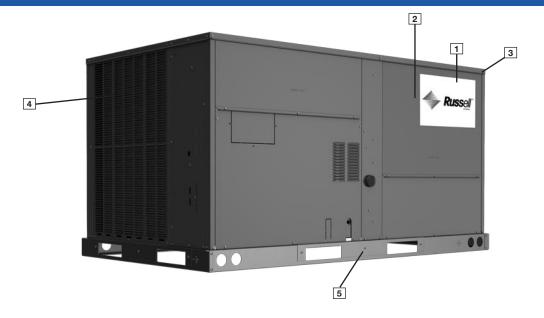
*When comparing the GWP of R-454B to R-410A refrigerant.

FACTORY-INSTALLED OPTIONS:

- Louvered panels
- Hinged access doors
- Stainless steel heat exchanger (20 year warranty)
- Low ambient/freeze stat
- Non-powered convenience outlet
- Unfused disconnect

- Circuit breaker
- Economizer (Title 24 and ASHRAE 90.1 2022 compliant)
- Supply and return smoke detector
- ElectroFin® E-Coat for Microchannel Condenser Coil Coating
- ClearControl[™] Direct Digital Control (DDC)
- Comfort Alert® Phase-monitor Protection

FIELD-INSTALLED ACCESSORIES:


Accessory	Model Number	Factory Installation Available?
Economizers		
DDC Economizer with Single Enthalpy (Downflow) MicroMetl Economizer with Honeywell Controller	RXRD-01MCDBM3	Yes
DDC Economizer with Single Enthalpy (Horizontal) MicroMetl Economizer with Honeywell Controller	RXRD-01MCHBM3	No
Non-DDC Economizer with No Controls (Downflow) MicroMetl Economizer, Belimo Actuator	RXRD-31MCDAM3	No
Non-DDC Economizer with Single Enthalpy (Downflow) MicroMetl Economizer with Honeywell Jade Controller	RXRD-01MCDAM3	Yes
Non-DDC Economizer with Single Enthalpy (Downflow) MicroMetl Economizer with Siemens Controls	RXRD-11MCDAM3	Yes
Non-DDC Economizer with Single Enthalpy (Downflow) Ruskin Rooftop Systems Economizer with RRS Basic Controller	RXRD-41MCDAM3	Yes
Non-DDC Economizer with Single Enthalpy (Downflow) Ruskin Rooftop Systems Economizer with Siemens Controls	RXRD-51MCDAM3	Yes
Non-DDC Economizer with Single Enthalpy (Horizontal) MicroMetl Economizer with Honeywell Jade Controller	RXRD-01MCHAM3	No
Non-DDC Economizer with Single Enthalpy (Horizontal) MicroMetl Economizer with Siemens Controls	RXRD-11MCHAM3	No
Non-DDC Economizer with Single Enthalpy (Horizontal) Ruskin Rooftop Systems Economizer with RRS Basic Controller	RXRD-41MCHAM3	No
Non-DDC Economizer with Single Enthalpy (Horizontal) Ruskin Rooftop Systems Economizer with Siemens Controls	RXRD-51MCHAM3	No
Economizer Universal DDC Interface Kit	RXRX-DDC01	Yes

FIELD-INSTALLED ACCESSORIES (CONTINUED):

Accessory	Model Number	Factory Installation Available?
Comfort Alert (1 Phase) DDC	RXRX-AZ03	Yes
Comfort Alert (1 Phase) Non-DDC	RXRX-AZ04	Yes
Comfort Alert (3 Phase) DDC	RXRX-AZ01	Yes
Comfort Alert (3 Phase) Non-DDC	RXRX-AZ02	Yes
Communication Card, BACnet	RXRX-AY01	No
Communication Card, LonWorks	RXRX-AY02	No
Concentric Adapter 3-4 Ton Drop	RXMC-DC01	No
Concentric Adapter 5-6 Ton Drop	RXMC-DC02	No
Concentric Diffuser 3-4 Ton Drop	RXRN-AED1800	No
Concentric Diffuser 5-6 Ton Drop	RXRN-AED2000	No
Concentric Diffuser 3-4 Ton Flush	RXRN-AEF1800	No
Concentric Diffuser 5-6 Ton Flush	RXRN-AEF2000	No
Convenience Outlet, Nonpowered	RXRX-BN01	Yes
Dual Enthalpy Kit (for Honeywell Jade™)	RXRX-BV01	No
Dual Enthalpy Kit DDC (for Honeywell DDC)	RXRX-BV02	No
Dual Enthalpy, Temperature and Humidity Sensor (for Ruskin Basic Controller)	PD955977	No
Dual Enthalpy, Temperature and Humidity Sensor (for Siemens)	PD555460	No
Flue Diverter (RGEC 75K, 100K & 120K)	RXRX-DEG03	No
Freeze Stat Kit	RXRX-AM05	Yes
Fresh Air Damper, Manual	RXRF-ACA1	No
Fresh Air Damper, Motorized	RXRF-ACB1	No
Fresh Air Damper, Motorized (DDC)	RXRF-ACC1	No
Low-Ambient Control Kit	RXRZ-A04	Yes
LP Kit (RGEC 75K, 120K)	RXGJ-FP40	No
LP Kit (RGEC 100K)	RXGJ-FP41	No
MERV 8 Filter	RXMF-M08A21616	No
MERV 13 Filter	RXMF-M13A21616	No
Outdoor Coil Louver Kit	RXRX-ADD04C	Yes

Accessory	Model Number	Factory Installation Available?
Power Exhaust (230V) Vertical <i>MicroMetl</i>	RXRX-CCF02C	No
Power Exhaust (460V) Vertical <i>MicroMetl</i>	RXRX-CCF02D	No
Power Exhaust (230V) Horizontal <i>MicroMetl</i>	RXRX-CCF03C	No
Power Exhaust (460V) Horizontal <i>MicroMetl</i>	RXRX-CCF03D	No
Power Exhaust (230V) Vertical Ruskin Rooftop Systems	RXRX-RCF02C	No
Power Exhaust (460V) Vertical <i>Ruskin Rooftop Systems</i>	RXRX-RCF02D	No
Power Exhaust (575V) Vertical <i>Ruskin Rooftop Systems</i>	RXRX-RCF02Y	No
Power Exhaust (230V) Horizontal <i>Ruskin Rooftop Systems</i>	RXRX-RCF03C	No
Power Exhaust (460V) Horizontal <i>Ruskin Rooftop Systems</i>	RXRX-RCF03D	No
Power Exhaust (575V) Horizontal <i>Ruskin Rooftop Systems</i>	RXRX-RCF03Y	No
Roofcurb, 14"	RXKG-DCC14	No
Roofcurb, 14" Welded	RXKG-DC14	No
Roofcurb, 24"	RXKG-DCC24	No
Roofcurb, 24" Welded	RXKG-DC24	No
Roofcurb Adapter	RXRX-DCCAE	No
Sensor, Carbon Dioxide (Wall Mount)	RXRX-AR02	No
Sensor, Room Humidity	RHC-ZNS4	No
Sensor, Room Temperature and Relative Humidity	RHC-ZNS5	No
Smoke Detector, Return (Field kit)	RXRX-BS01	No
Smoke Detector, Return/ Supply (Field kit)	RXRX-BS02	No
Unfused Service Disconnect	RXRX-BP01	Yes
UV-C Kit 208V/230V	RXRX-UVC22C	No
UV-C Transformer 460V/575V	RXRX-UVCTC	No

Russell® By Rheem | RGEC Packaged Gas Electric Units

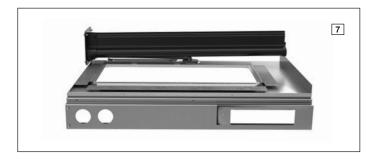
Cabinet and Foundation

Outwardly, the large Russell[®] By Rheem label (1) identifies the brand to the customer. The sheet-metal cabinet (2) uses 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3) as well as gasket-protected panels and screws. The Russell[®] By Rheem hail guard (optional) (4) sets the standard for coil protection in the industry. Electro deposition, baked-on enamel that is tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. Following that model, the foundation is comprised of 14-gauge, commercial-grade, full perimeter base rails (5) that integrate fork slots and rigging holes to save set-up time on the job site.

Easy Installation

The Renaissance line features a footprint that simplifies the replacement process by eliminating the need for a new curb adapter and being able to match inlet, outlet and electrical connections of the most common/industry-standard configurations.


Base Pan

The base pan is stamped to form a 7/8" flange around the supply and return cover, which eliminates the worry of water entering the conditioned space ([6]). All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.

Drain Pan

The Qwik-Clean Drain Pan (7) is made from a composite material that resists the growth of harmful bacteria. With both side and center drain options, the drain pan slides out completely for easy cleaning. It also features a standard overflow switch.

Test Standards

During development, each unit was tested to U.L. 60335-2-40, AHRI 210/240 (3-5 ton) or AHRI 340/360 (6 ton), as well as other Russell[®] By Rheem-required reliability tests. Russell[®] By Rheem adheres to stringent ISO 9001 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate. Contractors can be assured that when a Russell[®] By Rheem packaged unit arrives at the job, it is ready to go with a factory charge and quality checks.

Easy Access

All major compartments are easily accessible from the front of the unit: the electrical compartment, blower compartment, heating section, and outdoor section. Each compartment has mechanical fasteners. Panels are permanently embossed with the compartment name (e.g. control/filter access, blower access, and electric heat access). The filter compartment is accessed through a large, mechanically fastened panel. Information is readily available on the outside of the panel, with a nameplate that contains the model and serial numbers, electrical data, and other important unit information. Hinged access is available as an option for the electrical, blower, and filter compartments.

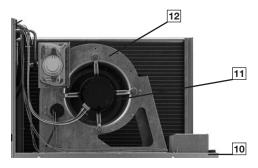
Charging Charts, Wiring Diagrams, & Labels

The unit charging chart is located on the outside of the compressor access panel. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. The model and serial numbers are located on the right of the control box. Having this information on the inside means easier

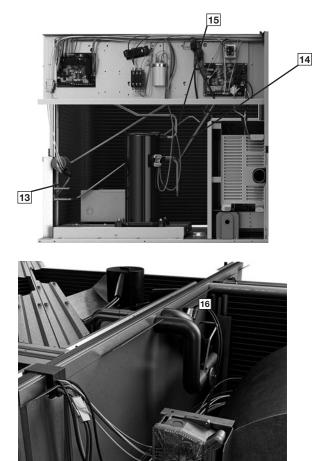
model identification for the life of the product. The production line quality test assurance label is also placed in this location (3).

Filter Rack

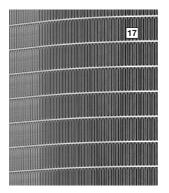
Located within the filter compartment, the Qwik-Change Flex-Fit Rack ([9]) allows easy changeover between 2" and 4" standard size and readily available filters.


Blower Assembly

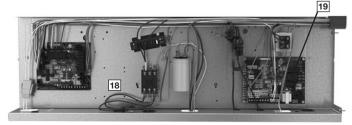
Removing three screws provides full access to the blower compartment. Inside, the Qwik-Slide Blower Assembly (10) is incredibly easy to access and remove. This makes servicing internal components such


as blower motor, TXV, and microchannel coil much easier. The entire assembly slides out by removing the 3/8" screws from the blower retention bracket.

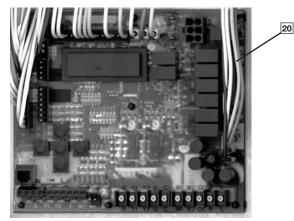
Where the demands for the job require high static, Russell[®] By Rheem offers drives that deliver nominal airflow up to 1.5" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (12) and blower scroll provide quiet and efficient airflow.


High and Low Pressure Switches & Freeze Stat

High pressure (13) and low pressure (14) switches are standard. They are located in the outdoor section along with the low-ambient control (15). The optional Freeze Stat (16) (standard on models with ClearControl), is clipped onto the suction line in the blower compartment. The low ambient control allows the compressor to operate down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The high-pressure switch shuts off the compressors if pressures exceeding 610 PSIG are detected. The low-pressure switch shuts off the compressors if low pressure is detected due to loss of charge. Built-in Smart Logic reduces nuisance calls by only shutting off compressors after the third detection. The freeze stat protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow.


MicroChannel Evaporator & TXV

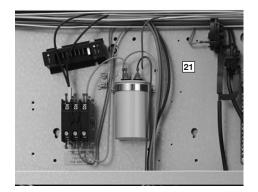
The Microchannel Evaporator (17) is accessible through the blower compartment, and through the filter rack, to simplify cleaning. The evaporator uses microchannel technology for maximum heat transfer, light weight, fewer manually brazed connections and reduced refrigerant charge. The TXV metering device maintains superheat over a wide range of varying temperatures optimizing unit performance for all conditions.


Control Box

Inside the control box (18), each electrical component is clearly labeled; that label matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and is color-coded to match the wiring diagram. The integrated furnace control, incorporates the PlusOne Diagnostics: Dual 7-Segment LED Display (19) with easy-to-understand fault codes. The control transformer has a low voltage circuit breaker that trips if an electrical short occurs.

ClearControl DDC System

The optional ClearControl Direct Digital Control (DDC) system consisting of a rooftop unit controller, temperature sensors, and pressure sensors, allows real-time monitoring and communication between rooftop units. The Rooftop Unit Controller (RTU-C) that is factory mounted and wired into the control panel. The RTU-C is a solid-state, microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C, using proportional/integral control algorithms, performs specific unit functions that govern unit operation in response to zone conditions, system temperatures, system pressures, ambient conditions, and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system (20). Features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT), and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freeze stats to allow measurement of refrigerant suction line temperatures.



The RGEC Gas Electric with the RTU-C is specifically designed to be applied in four distinct applications:

- 1. BACnet Communication The RGEC is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field-installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat, or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.
- 2. LonWorks Communication The RGEC is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field-installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon gualified, twisted pair cable, Belden 8471, or NEMA Level 4 cables. The module can communicate up to 1640 feet with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.
- **3. 24V Thermostat Compatibility** The RGEC is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.
- 4. Zone Sensor Compatibility The RGEC is compatible with a zone sensor and a mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

Comfort Alert

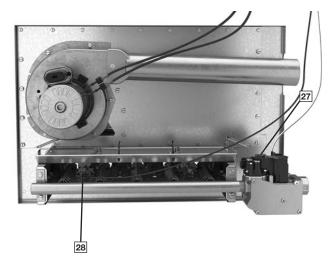
A factory or field-installed Comfort Alert ([21]) module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

Convenience Outlet, Disconnect, & Circuit Breaker

The convenience outlet option comes non-powered from the factory (23), disconnect (24) and circuit breakers are available. Low and high voltage can enter from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the number 1 compressor contactor. The suggested mounting for the field-installed disconnect or circuit breaker is on the exterior side of the electrical control box.

External Lockable Gauge Ports

To the right left of the compressor compartment are the externally mounted lockable gauge ports. They are permanently identified


by embossed lettering that identifies the compressor circuit, high pressure connection, ([25]) and low pressure connection ([26]). Because the gauge ports are mounted externally, an accurate diagnostic of system operation can be performed without removing access panels. The plastic caps on the Shrader fitting ensure the gauge ports are leak proof, and the red cover on the caps indicates that this unit is charged with A2L refrigerant.

Furnace & Gas Heat Exchanger

The furnace compartment contains the latest technology on the market. Each furnace is equipped with a two-stage gas valve (27) to provide two stages of gas heat input. The first stage operates at 70% of the second stage (full fire), 81% steady state efficiency is maintained. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements or in applications with corrosive environments. The direct spark igniter (28) ensures reliable ignition in the most adverse conditions. This is coupled with remote flame sensor so the flame is carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base. Each furnace has the following safety devices to ensure consistent and reliable operation after ignition:

- Stainless steel heat exchanger warranty increases from 10 years to 20 years.
- Pressures switches to ensure adequate combustion airflow before ignition.
- Rollout switches to prevent obstruction or cracks in the heat exchanger.
- A limit device to protect the furnace from over-temperature problems.

Russell® By Rheem | RGEC Packaged Gas Electric Units

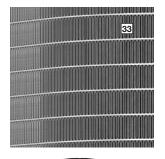
Compressor

The compressor compartment houses the heartbeat of the unit. The scroll compressor (30) is known for its long life and for reliable. quiet, and efficient operation. The suction and discharge lines are designed with shock loops (31) to absorb the strain and stress that the starting torque, steady state operation, and shut-down cycle impose on the refrigerant tubing. 3-5 ton YB units include one single-stage compressor, and 6 ton YB units and 3-5 ton YC units include one twostage compressor.

Condenser Fans

The condenser fan motor (32) can easily be accessed and maintained through the top of the unit. A down-mount fan provides corrosion protection and easy removal. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

MicroChannel Condenser Technology


The outdoor coil uses the latest microchannel technology (33) for the most effective method of heat transfer. The outdoor coil is protected by optional louvered panels, which allow unobstructed airflow while protecting the unit from both the environment and vandalism.

Coil Coating

Every unit offers the option of factory-applied ElectroFin® E-Coat condenser coating (34) that delivers superior corrosion resistance for outdoor coils to operate in the harshest of environments.

Economizer and Dampers

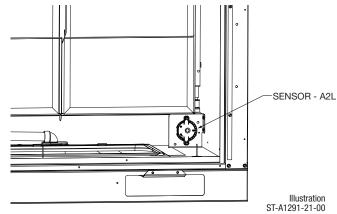
Each unit is designed for both down flow or horizontal applications (35) for job configuration flexibility. The return air compartment can also contain an economizer. Each unit is pre-wired for the economizer to allow quick, plug-in installation. Available as a

factory-installed option, the economizer provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements. It comes standard with single enthalpy controls, which can be upgraded to dual enthalpy easily in the field. The economizer control has a minimum position set point, an outdoor-air set point, a mixed-air set point, and a CO2 set point. Barometric relief is standard on all economizers.

Power Exhaust is easily field-installed. The power exhaust is housed in the barometric relief opening and is easily slipped in with a plugin assembly. The wire harness to the economizer also has accommodations for a smoke detector.

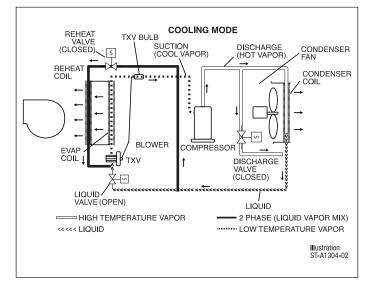
The damper minimum position, actual damper position, power exhaust on/off set point, mixed air temperature limit set point, and Demand Controlled Ventilation (DCV) set point can be read and adjusted at the unit controller display or remotely through a network connection. The space CO₂ level, mixed air temperature, and Economizer Status (free cooling available, single or dual enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer faults will trigger a network alarm and can be read at the unit controller display or remotely through a network connection.

Roofcurb


The Russell® By Rheem roofcurb (36) is made for tool-less assembly at the jobsite by engaging tabs in slots of adjacent curb sides, which makes the assembly process quick and easy.

Refrigerant Leak Detection

In the event of a detected refrigerant leak, the refrigerant leak detection sensor will trigger mitigation procedure that shuts off the compressor(s) and turns on the indoor blower motor.


The sensor is installed on the bracket facing the filter rack. From the outside of the unit, the sensor is not visible.

HUMIDIDRY DEHUMIDIFICATION SYSTEM

With the factory-installed dehumidification option, in addition to a thermostat or space temperature sensor that is normally present, an indoor relative humidity sensor is installed in the occupied space and connected to the Rooftop Unit Controller (RTU-C) which then controls the capacity of the cooling coil to remove moisture from the supply air and maintain space relative humidity below an adjustable limit visible on the RTU-C display. The default value is the ASHRAE recommended limit of 60% RH. With this option, a refrigerant reheat coil is installed downstream from the evaporator coil. When the space humidity is too high and reheat is energized, this coil uses some of the heat that is normally rejected to the outside by the condenser coil to instead reheat the cold air from the evaporator coil just enough to avoid overcooling and providing "neutral air" to the occupied space. On a two-stage system, it is possible for both a thermostat and humidistat to register readings above set point. Under this condition, the system runs in the high stage dehumidification cycle, and the VFD operates on high speed. This provides dry conditioned air.

Because the demand for dehumidification can be different from the cooling demand, the unit will first satisfy the demand for cooling and then if the space humidity is still too high, dehumidification mode is energized. When in dehumidification mode, the supply air leaving the unit will be near the entering air temperature, but at a much lower humidity. The unit will exit the dehumidification mode when the humidity set point is satisfied; or if the load is increased, it will return to normal cooling mode. Reheat is not available during the gas-heating mode.

Figure 1 shows the refrigerant path during the normal cooling mode. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The superheated refrigerant vapor next carries the heat to the outside coil where the heat is then rejected and the refrigerant condenses into a subcooled liquid where the process repeats itself.

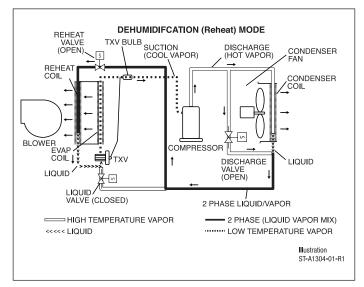


Figure 2 shows the refrigerant path during the reheat mode. When the reheat cycle is energized by the RTU-C, the reheat solenoid valve, upstream of the reheat coil opens. The liquid solenoid valve ahead of the TXV, closes. The discharge solenoid valve, in the compressor discharge line, opens. The liquid refrigerant leaves the TXV with the sudden pressure drop causing the liquid to expand to a vapor and absorbing the heat from the supply air going through the evaporator coil. The refrigerant vapor then travels to the compressor where it is elevated to a higher pressure and temperature. The refrigerant next carries the heat to a parallel path between the outside condenser coil and a bypass circuit. Some of the heat is rejected outdoor. The ratio of heat rejected outdoors versus indoors is controlled by an outdoor fan motor controller (OFMC) that monitors the two-phase temperature and varies the fan speed. This 2-phase refrigerant vapor is then sent to the reheat coil. As the refrigerant travels through the reheat coil it condenses into a subcooled liquid where the process repeats itself.

*** GE 036 C 10 R Υ Т 2 C В Α Α 5 Δ 13 14 6 789 10 11 12 15 16 17 1 23 18 19 20

1-Brand

R = Russell[®] By Rheem

2, 3–Unit Type

GE = Packaged Gas Electric

4-Cabinet Type

C = Small Commercial

5-Refrigerant

Y = R-454B

6-Efficiency Level

B = Standard Efficiency C = High Efficiency

7, 8, 9-Capacity

036 = 3 Ton 048 = 4 Ton 060 = 5 Ton 072 = 6 Ton¹

10-Major series

A = 1st Design

NOTES:

- 1. 6 ton units are only available with Standard Efficiency.
- 2. J voltage is not available on 6 ton models.
- 3. Y voltage is not available on HumidiDry® models or High Efficiency (RGECYC) models.
- 4. U drive is not available with J voltage.

Comfort Alert® is a registered trademark owned by Copeland LP

11-Voltage

- $J = 1 PH, 208-230 V, 60 Hz^2$
- C = 3 PH, 208-230 V, 60 Hz
- D = 3 PH, 460 V, 60 Hz
- Y = 3 PH, 575 V, 60 Hz³

12-Drive

- T = Direct Drive Standard Static Constant Torque
- U = Direct Drive High Static Constant Torque⁴

13, 14—Heat Capacity

07 = 75,000 Btu/h 10 = 100,000 Btu/h 12 = 125,000 Btu/h

15—Heat Configuration

2 = 2 Stage B = 2 Stage Stainless

16-Control

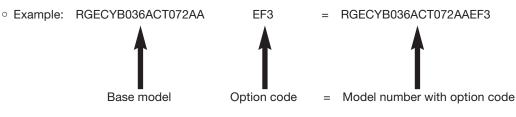
- A = CoreCommand[™]
- (Non-Communicating)
- B = CoreCommand & Comfort Alert®
- C = ClearControl[™] (DDC)
- D = ClearControl (DDC) & Comfort Alert

17-Minor series

A = 1st Design

18, 19, 20 – Option Code See next page

FACTORY-INSTALLED OPTION CODES FOR RGEC (3 TO 6 TON)


18			19				20						
LV =	Louver p	rotection	l		LF = Lo	LF = Low Ambient/Freeze Stat				EC = Economizer			
	HumidiD as Rehea		l		NP = No	n-powered	Convenier	ce Outlet	SS = Su	pply and Re	eturn Smok	e Detector	
HA =	Hinged A	Access			DC = Dis	sconnect Sv	vitch		RS = Re	turn Smoke	e Detector		
CC =	Coil Coa	ting											
					Option	code charad	cter highlig	hted below					
Α		Nc	one		Α	None			0 None				
В	LV				В	LF			1	EC			
С	HA				С	NP			2	RS			
D	LV	HA			D	LF	NP		3	EC	RS		
E	LV	СС			E	DC			4	SS	RS		
F	LV	HA	CC		F	LF	DC		5	EC	SS	RS	
Ν	RH				н	NP	DC						
Р	LV	RH			к	LF	NP	DC					
Q	RH	HA											
R	LV	RH	СС										
S	LV	RH	HA										
т	LV	RH	HA	СС									

¹RH Models with DDC Controls must include Low Ambient/Freeze Stat (LF)

Instructions for Factory-Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, "AAO" follows the model number.

- Step 1: In the table above, based on the desired features, choose option code character from highlighted options on the left side under the number 18. For example, the option code character "E" has Louver protection and Coil Coating.
- Step 2: In the table above, based on the desired features, choose option code character from highlighted options on the left side under the number 19. For example, the option code character "F" has Low Ambient / Freeze Stat and Disconnect switch.
- Step 3: In the table above, based on the desired features, choose option code character from highlighted options on the left side under the number 20. For example, the option code character "3" has Economizer and Return Smoke.
- The resulting option code from examples above is: "EF3"
- Step 4: Add your option code selection to the end of model number

Russell® By Rheem | RGEC Packaged Gas Electric Units

To select an RGEC Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

Voltage-	230 V – 3 Phase – 60 Hz
Total Cooling Capacity-	47,000 Btu/h [13.8 kW]
Sensible Cooling Capacity-	36,000 Btu/h [10.6 kW]
Heating Capacity—	75,000 Btu/h [22 kW]
*Condenser Entering Air—	95°F [35.0°C] DB
*Evaporator Mixed Air Entering-	– 67°F [19.4°C] WB
	78°F [25.6°C] DB
*Indoor Air Flow (vertical)—	1600 CFM [755 L/s]
*External Static Pressure—	0.6 in. WG [.15 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within range of a nominal 4-ton unit, use the cooling performance table at 95°F DB condenser inlet air. Interpolate between 1730 CFM [816 L/s] and 1400 CFM [660 L/s] to determine total and sensible capacity and Depression Ratio for inlet air at 1600CFM [755 L/s] indoor airflow (table basis)

Interpolation Formula:

$$kBtu/h_{1}+\left[(CFM-CFM_{1})x\left(\frac{kBtu/h_{2}-kBtu/h_{1}}{CFM_{2}-CFM_{1}}\right)\right]=kBtu/h$$

Total Cooling Capacity:

 $46,800 + \left[(1,600-1,730) \times \left(\frac{45,200-46,800}{1,400-1,730} \right) \right] = 46,170 \text{ Btu/h}$

Total Cooling Capacity = 46,170 Btu/h [13.5 kW]Sensible Cooling Capacity = 33,7400 Btu/h [9.9 kW]DR = 0.2

When the entering dry bulb temperature (dbE) is not 80°F [26.7°C], the sensible capacity needs to be adjusted. Note: total capacity is unaffected

Sensible Capacity Depression Formula:

Capsensible + [1.10 x CFM x (1 - DR) x (dbE - 80)]

= 30,924 + [1.10 x 1,600 x (1 – 0.2) x (78 – 80)] Sensible Cooling Capacity = 30,924 Btu/h [9.1 kW]

3. DETERMINE BLOWER SPEED AND BHP TO MEET SYSTEM DESIGN.

Total ESP (external static pressure) per the spec of 0.6 in WG [.15 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.13 in. WG [0.04 kPa] for wet coil. Using the "Airflow Performance Table", at the specified 1,600 CFM and 0.7 in. WG [0.17 kPa] ESP, determine blower wattage.

CFM = 1564Watts = 440 Tap = 5

4. CALCULATE INDOOR BLOWER Btu/h HEAT EFFECT FROM MOTOR BHP IN STEP 3.

Assuming an average of 85% motor efficiency, determine the amount of heat generated by the blower motor at the specified CFM and ESP by dividing the watts used by the motor efficiency and solving for the difference. Convert this value from watts to Btu/h, multiplying by 3.41 Btu/h/Watt Watts = 440

Avg. Motor Efficiency = 85% Indoor Blower Motor Heat = $\left[\left(\frac{Watts}{0.85}\right) - Watts\right] \times 3.41$ = [(440/0.85)-440] x 3.41 = 77.6 Btu/h [0.02 kW]

5. CALCULATE THE NET COOLING CAPACITIES

Net cooling capacities can be calculated by subtracting the motor heat from the gross cooling capacities.

Net Total Capacity = Gross Total Capacity – Indoor Blower Motor Heat

= 46,170 - 77 = 46,093 Btu/h [13.5 kW]

Net Sensible Capacity = Gross Sensible Capacity – Indoor Blower Motor Heat

= 30,924 - 77 = 30,847 Btu/h [9.0 kW]

6. SELECT UNIT HEATING CAPACITY

For Gas Heating, choose the gas heat capacity that closest matches the specified heat capacity requirements. In this selection, the 75,000 BTU input is selected.

7. CHOOSE MODEL RGECYB048ACT07

Model RGECYB Series	036ACT 036ADT 036AJT	036ACU	036ADU	036AYT	036AYU
Cooling Performance ^A					
Cooling Capacity Btu/h [kW]	36,000 [10.55]	36,000 [10.55]	36,000 [10.55]	36,000 [10.55]	36,000 [10.55]
EER2/SEER2 ^B	10.6/13.4	10.6/13.4	10.6/13.4	10.6/13.4	10.6/13.4
Nominal CFM/AHRI Rated CFM [L/s]	1200/1175 [566/555]	1200/1175 [566/555]	1200/1175 [566/555]	1200/1175 [566/555]	1200/1175 [566/555
AHRI Net Cooling Capacity Btu/h [kW]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]
Net Sensible Capacity Btu/h [kW]	25,600 [7.5]	25,600 [7.5]	25,600 [7.5]	25,600 [7.5]	25,600 [7.5]
Net Latent Capacity Btu/h [kW]	8,600 [2.52]	8,600 [2.52]	8,600 [2.52]	8,600 [2.52]	8,600 [2.52]
Net System Power kW	2.7	2.7	2.7	2.7	2.7
Compressor					
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ^c	78	78	78	78	78
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]
Face Area sq. ft. [sq. m]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	7.48 [0.69]	7.48 [0.69]	7.48 [0.69]	7.48 [0.69]	7.48 [0.69]
Rows/FPI [FPcm]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	4250 [2006]	4250 [2006]	4250 [2006]	4250 [2006]	4250 [2006]
No. Motors/HP	1 at 1/5	1 at 1/5	1 at 1/5	1 at 1/5	1 at 1/5
Motor RPM	850	850	850	850	850
Indoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]
Drive Type	Direct	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1	1
Motor HP	3/4	1-1/2	1	3/4	1-1/2
Motor RPM	1050	1050	1050	1050	1050
Motor Frame Size	48	48	48	48	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(4)2x16x16	(4)2x16x16	(4)2x16x16	(4)2x16x16	(4)2x16x16
[mm x mm x mm]	[51x406x406]	[51x406x406]	[\$1x406x406]	[51x406x406]	[51x406x406]
Refrigerant Charge Oz. [g]	72 [2041]	72 [2041]	72 [2041]	72 [2041]	72 [2041]
Weights					
Net Weight Ibs. [kg]	556 [252]	562 [255]	562 [255]	606 [275]	612 [278]
Ship Weight Ibs. [kg]	594 [269]	600 [272]	600 [272]	644 [292]	650 [295]

See Page 22 for Notes.

Model RGECYB Series	048ACT 048ADT 048AJT	048ACU	048ADU	048AYT	048AYU
Cooling Performance ^A					CONTINUED>
Cooling Capacity Btu/h [kW]	48,000 [14.07]	48,000 [14.07]	48,000 [14.07]	48,000 [14.07]	48,000 [14.07]
EER2/SEER2 ^B	10.6/13.4	10.6/13.4	10.6/13.4	10.6/13.4	10.6/13.4
Nominal CFM/AHRI Rated CFM [L/s]	1600/1570 [755/741]	1600/1570 [755/741]	1600/1570 [755/741]	1600/1570 [755/741]	1600/1570 [755/741]
AHRI Net Cooling Capacity Btu/h [kW]	45,500 [13.33]	45,500 [13.33]	45,500 [13.33]	45,500 [13.33]	45,500 [13.33]
Net Sensible Capacity Btu/h [kW]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]
Net Latent Capacity Btu/h [kW]	11,300 [3.31]	11,300 [3.31]	11,300 [3.31]	11,300 [3.31]	11,300 [3.31]
Net System Power kW	3.8	3.8	3.8	3.8	3.8
Compressor					
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ^c	85.3	85.3	85.3	85.3	85.3
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]
Face Area sq. ft. [sq. m]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]
Face Area sq. ft. [sq. m]	8.41 [0.78]	8.41 [0.78]	8.41 [0.78]	8.41 [0.78]	8.41 [0.78]
Rows/FPI [FPcm]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	5900 [2784]	5900 [2784]	5900 [2784]	5900 [2784]	5900 [2784]
No. Motors/HP	1 at 1/2 HP	1 at 1/2 HP	1 at 1/2 HP	1 at 1/2 HP	1 at 1/2 HP
Motor RPM	1075	1075	1075	1075	1075
Indoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]
Drive Type	Direct	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1	1
Motor HP	3/4	1-1/2	1	3/4	1-1/2
Motor RPM	1050	1050	1050	1050	1050
Motor Frame Size	48	48	48	48	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(4)2x16x16	(4)2x16x16	(4)2x16x16	(4)2x16x16	(4)2x16x16
[mm x mm x mm]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]
Refrigerant Charge Oz. [g]	67 [1899]	67 [1899]	67 [1899]	67 [1899]	67 [1899]
Weights					
Net Weight Ibs. [kg]	583 [264]	589 [267]	589 [267]	633 [287]	639 [290]
Ship Weight Ibs. [kg]	621 [282]	627 [284]	627 [284]	671 [304]	677 [307]

See Page 22 for Notes.

Model RGECYB Series	060ACT 060ADT 060AJT	060ACU	060ADU	060AYT	060AYU
Cooling Performance ^A					CONTINUED>
Cooling Capacity Btu/h [kW]	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]
EER2/SEER2 ^B	10.6/13.4	10.6/13.4	10.6/13.4	10.6/13.4	10.6/13.4
Nominal CFM/AHRI Rated CFM [L/s]	2000/1825 [944/861]	2000/1825 [944/861]	2000/1825 [944/861]	2000/1825 [944/861]	2000/1825 [944/861]
AHRI Net Cooling Capacity Btu/h [kW]	57,000 [16.71]	57,000 [16.71]	57,000 [16.71]	57,000 [16.71]	57,000 [16.71]
Net Sensible Capacity Btu/h [kW]	43,000 [12.6]	43,000 [12.6]	43,000 [12.6]	43,000 [12.6]	43,000 [12.6]
Net Latent Capacity Btu/h [kW]	14,000 [4.1]	14,000 [4.1]	14,000 [4.1]	14,000 [4.1]	14,000 [4.1]
Net System Power kW	5.0	5.0	5.0	5.0	5.0
Compressor					
No./Type	1/Scroll	1/Scroll	1/Scroll	1/Scroll	1/Scroll
Outdoor Sound Rating (dB) ^c	86	86	86	86	86
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	0.63 [16]	0.63 [16]	0.63 [16]	0.63 [16]	0.63 [16]
Face Area sq. ft. [sq. m]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.66 [1.55]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
MicroChannel Depth in. [mm]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]
Face Area sq. ft. [sq. m]	8.41 [0.78]	8.41 [0.78]	8.41 [0.78]	8.41 [0.78]	8.41 [0.78]
Rows/FPI [FPcm]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]	1 / 20 [8]
Refrigerant Control	TX Valves				
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	5900 [2784]	5900 [2784]	5900 [2784]	5900 [2784]	5900 [2784]
No. Motors/HP	1 at 1/2	1 at 1/2	1 at 1/2	1 at 1/2	1 at 1/2 HP
Motor RPM	1075	1075	1075	1075	1075
Indoor Fan - Type	FC Centrifugal				
No. Used/Diameter in. [mm]	1/11x11 [279x279]				
Drive Type	Direct	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1	1
Motor HP	1	1-1/2	1-1/5	1	1-1/2
Motor RPM	1050	1050	1050	1050	1050
Motor Frame Size	48	48	48	48	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(4)2x16x16 [51x406x406]	(4)2x16x16 [51x406x406]	(4)2x16x16 [51x406x406]	(4)2x16x16 [51x406x406]	(4)2x16x16 [51x406x406]
Refrigerant Charge Oz. [g]	80 [2268]		80 [2268]	80 [2268]	80 [2268]
Weights	00 [2200]	80 [2268]	00 [2200]	00 [2200]	00 [2200]
•	286 10661	500 [060]	502 [260]	636 10001	640 [001]
Net Weight Ibs. [kg] Ship Weight Ibs. [kg]	586 [266] 624 [283]	592 [269] 630 [286]	592 [269] 630 [286]	636 [288] 674 [306]	642 [291] 680 [308]
Ship weight lbs. [kg]	024 [200]	000 [200]	000 [200]	[000]	000 [000]

See Page 22 for Notes.

072ACT	072ACIJ			
072ADT	072ADU	072ADU	072AYT	072AYU
				CONTINUED>
72,000 [21.1]	72,000 [21.1]	72,000 [21.1]	72,000 [21.1]	72,000 [21.1]
11.0/14.6	11.0/14.6	11.0/14.6	11.0/14.6	11.0/14.6
2,400/2,400	2,400/2,400	2,400/2,400	2,400/2,400	2,400/2,400
[1,133/1,133]	[1,133/1,133]	[1,133/1,133]	[1,133/1,133]	[1,133/1,133]
68,500 [20.08]	68,500 [20.08]	68,500 [20.08]	68,500 [20.08]	68,500 [20.08]
51,500 [15.09]	51,500 [15.09]	51,500 [15.09]	51,500 [15.09]	51,500 [15.09]
17,000 [4.98]	17,000 [4.98]	17,000 [4.98]	17,000 [4.98]	17,000 [4.98]
6.2	6.2	6.2	6.2	6.2
1/Scroll	1/Scroll	1/Scroll	1/Scroll	1/Scroll
85	85	85	85	85
Louvered	Louvered	Louvered	Louvered	Louvered
MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]
16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]	16.46 [1.53]
1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Louvered	Louvered	Louvered	Louvered	Louvered
MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]
				8.41 [0.78]
				1 / 20 [8]
TX Valves	TX Valves	TX Valves	TX Valves	TX Valves
1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Propeller	Propeller	Propeller	Propeller	Propeller
1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]
Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
5900 [2784]	5900 [2784]	5900 [2784]	5900 [2784]	5900 [2784]
1 at 3/4	1 at 3/4	1 at 3/4	1 at 3/4	1 at 3/4
1100	1100	1100	1100	1100
FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]	1/11x11 [279x279]
Direct	Direct	Direct	Direct	Direct
Multiple	Multiple	Multiple	Multiple	Multiple
1	1	1	1	1
1-1/5	1-1/5	1-1/5	1-1/5	1-1/5
1300	1300	1300	1300	1300
48	48	48	48	48
Disposable	Disposable	Disposable	Disposable	Disposable
Yes	Yes	Yes	Yes	Yes
(4)2x16x16	(4)2x16x16	(4)2x16x16	(4)2x16x16	(4)2x16x16
	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]
		0 - 10 / / 03	05 [0440]	05 [0440]
85 [2410]	85 [2410]	85 [2410]	85 [2410]	85 [2410]
	85 [2410]	85 [2410]	85 [2410]	85 [2410]
	85 [2410] 592 [269]	85 [2410] 592 [269]	636 [288]	642 [291]
	72,000 [21.1] 11.0/14.6 2,400/2,400 [1,133/1,133] 68,500 [20.08] 51,500 [15.09] 17,000 [4.98] 6.2 1/Scroll 85 Louvered MicroChannel 0.71 [18] 16.46 [1.53] 1/23 [9] Louvered MicroChannel 1.26 [32] 8.41 [0.78] 1 / 20 [8] TX Valves 1/0.75 [19.05] Propeller 1/26 [660.4] Direct/1 5900 [2784] 1 at 3/4 1100 FC Centrifugal 1/11x11 [279x279] Direct Multiple 1 1-1/5 1300 48 Disposable Yes (4)2x16x16 [51x406x406]	072ADT 072ADU 72,000 [21.1] 11.0/14.6 11.0/14.6 2,400/2,400 2,400/2,400 [1,133/1,133] 68,500 [20.08] 68,500 [20.08] 51,500 [15.09] 17,000 [4.98] 17,000 [4.98] 6.2 1/Scroll 1/Scroll 1/Scroll 85 85 Louvered Louvered MicroChannel MicroChannel 0.71 [18] 0.71 [18] 16.46 [1.53] 16.46 [1.53] 1/23 [9] 1/23 [9] Louvered Louvered MicroChannel MicroChannel 1.26 [32] 1.26 [32] 8.41 [0.78] 8.41 [0.78] 1/20 [8] 1/20 [8] TX Valves TX Valves 1/0.75 [19.05] 1/0.75 [19.05] Propeller Propeller 1/26 [660.4] 1/26 [660.4] Direct/1 Direct/1 5900 [2784] 5900 [2784] 1 at 3/4 1 at 3/4 1 100 1100 FC Centrifugal FC C	072ADT 072ADU 072ADU 72,000 [21.1] 72,000 [21.1] 11.0/14.6 11.0/14.6 11.0/14.6 11.0/14.6 11.0/14.6 11.0/14.6 2,400/2,400 2,400/2,400 2,400/2,400 [1,133/1,133] 68,500 [20.08] 68,500 [20.08] 68,500 [20.08] 51,500 [15.09] 51,500 [15.09] 51,500 [15.09] 51,500 [15.09] 17,000 [4.98] 6.2 6.2 6.2 6.2 6.2 6.2 1/Scroll 1/Scroll 1/Scroll 1/Scroll 85 85 85 Louvered Louvered Louvered MicroChannel MicroChannel MicroChannel 0.71 [18] 0.71 [18] 0.71 [18] 16.46 [1.53] 16.46 [1.53] 16.46 [1.53] 1/23 [9] 1/23 [9] 1/23 [9] Louvered Louvered Louvered MicroChannel MicroChannel MicroChannel 1.26 [32] 1.26 [32] 1.26 [32] 8.41 [0.78] 8.41 [0.78] 1/20 [8]	072ADT 072ADU 072ADU 072ADU 72,000 [21.1] 72,000 [21.1] 72,000 [21.1] 72,000 [21.1] 11.0/14.6 11.0/14.6 11.0/14.6 11.0/14.6 2,400/2,400 2,400/2,400 2,400/2,400 2,400/2,400 [1,133/1,133] [1,133/1,133] [1,133/1,133] [1,133/1,133] [1,33/1,133] [1,133/1,133] [1,133/1,133] [1,133/1,133] [1,300] [20.08] 68,500 [20.08] 68,500 [20.08] 68,500 [20.08] 51,500 [15.09] 51,500 [15.09] 51,500 [15.09] 51,500 [15.09] 17,000 [4.98] 17,000 [4.98] 17,000 [4.98] 17,000 [4.98] 6.2 6.2 6.2 6.2 1/Scroll 1/Scroll 1/Scroll 1/Scroll 85 85 85 85 Louvered Louvered Louvered Louvered MicroChannel MicroChannel MicroChannel MicroChannel 1/23 [9] 1/23 [9] 1/23 [9] 1/23 [9] 1/23 [9] 1/23 [9] 1/28 [82]

See Page 22 for Notes.

Model RGECYC Series	036AJT	036ACT	036ACU	036ADT	036ADU
Cooling Performance ^A					CONTINUED>
Cooling Capacity Btu/h [kW]	36,000 [10.55]	36,000 [10.55]	36,000 [10.55]	36,000 [10.55]	36,000 [10.55]
EER/IEER ^D	12/16.2	12/16.2	12/16.2	12/16.2	12/16.2
Nominal CFM/AHRI Rated CFM [L/s]	1,200/1,055 [566/498]	1,200/1,055 [566/498]	1,200/1,055 [566/498]	1,200/1,055 [566/498]	1,200/1,055 [566/498
AHRI Net Cooling Capacity Btu/h [kW]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]
Net Sensible Capacity Btu/h [kW]	25,600 [7.5]	25,600 [7.5]	25,600 [7.5]	25,600 [7.5]	25,600 [7.5]
Net Latent Capacity Btu/h [kW]	8,600 [2.52]	8,600 [2.52]	8,600 [2.52]	8,600 [2.52]	8,600 [2.52]
Net System Power kW	3.23	3.23	3.23	3.23	3.23
Compressor					
No./Stage/Type	1/2/Scroll	1/2/Scroll	1/2/Scroll	1/2/Scroll	1/2/Scroll
Outdoor Sound Rating (dB) ^c	79	79	79	79	79
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Rifled: Tube Size OD or MicroChannel:					
Depth in. [mm]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]
Face Area sq. ft. [sq. m]	16.72 [1.55]	16.72 [1.55]	16.72 [1.55]	16.72 [1.55]	16.72 [1.55]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Rifled: Tube Size OD or MicroChannel: Depth in. [mm]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sg. ft. [sg. m]	7.49 [0.69]	7.49 [0.69]	7.49 [0.69]	7.49 [0.69]	7.49 [0.69]
Rows/FPI [FPcm]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]
Drive Type/No. Speeds	Direct/2	Direct/2	Direct/2	Direct/2	Direct/2
CFM [L/s]	4,850 [2,289]	4,850 [2,289]	4,850 [2,289]	4,850 [2,289]	4,850 [2,289]
No. Motors/HP	1 at 1/3 HP	1 at 1/3 HP			
Motor RPM	800/440	800/440	800/440	800/440	800/440
Indoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]
Drive Type	Direct	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1	1
Motor HP	3/4	3/4	1.5	3/4	1
Motor RPM	1050	1050	1400	1050	1050
Motor Frame Size	48	48	48	48	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16
[mm x mm x mm]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]
Refrigerant Charge Oz. [g]	66 [1871.1]	66 [1871.1]	66 [1871.1]	66 [1871.1]	66 [1871.1]
Weights					
Net Weight Ibs. [kg]	561.1 [254.5]	560.1 [254.1]	560.1 [254.1]	558.7 [253.4]	558.7 [253.4]
Ship Weight Ibs. [kg]	599.1 [271.7]	598.1 [271.3]	598.1 [271.3]	596.7 [230.4]	596.7 [270.7]
Ship Weight ibs. [Kg]	000.1 [211.1]	000.1 [271.0]	000.1 [271.0]	000.7 [270.7]	000.7 [270.7]

See Page 22 for Notes.

Model RGECYC Series	048AJT	048ACT	048ACU	048ADT	048ADU
Cooling Performance ^A					CONTINUED>
Cooling Capacity Btu/h [kW]	48,000 [14.07]	48,000 [14.07]	48,000 [14.07]	48,000 [14.07]	48,000 [14.07]
EER/IEER ^D	12/16.2	12/16.2	12/16.2	12/16.2	12/16.2
Nominal CFM/AHRI Rated CFM [L/s]	1,600/1,460 [755/689]	1,600/1,460 [755/689]	1,600/1,460 [755/689]	1,600/1,460 [755/689]	1,600/1,460 [755/689
AHRI Net Cooling Capacity Btu/h [kW]	45,500 [13.34]	45,500 [13.34]	45,500 [13.34]	45,500 [13.34]	45,500 [13.34]
Net Sensible Capacity Btu/h [kW]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]	34,200 [10.02]
Net Latent Capacity Btu/h [kW]	11,300 [3.31]	11,300 [3.31]	11,300 [3.31]	11,300 [3.31]	11,300 [3.31]
Net System Power kW	4.29	4.29	4.29	4.29	4.29
Compressor					
No./Stage/Type	1/2/Scroll	1/2/Scroll	1/2/Scroll	1/2/Scroll	1/2/Scroll
Outdoor Sound Rating (dB) ^c	83	83	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Rifled: Tube Size OD or MicroChannel:					
Depth in. [mm]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]
Face Area sq. ft. [sq. m]	16.72 [1.55]	16.72 [1.55]	16.72 [1.55]	16.72 [1.55]	16.72 [1.55]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Rifled: Tube Size OD or MicroChannel: Depth in. [mm]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]
Face Area sq. ft. [sq. m]	7.49 [0.69]	7.49 [0.69]	7.49 [0.69]	7.49 [0.69]	7.49 [0.69]
Rows/FPI [FPcm]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]
Drive Type/No. Speeds	Direct/2	Direct/2	Direct/2	Direct/2	Direct/2
CFM [L/s]	5,900 [2784]	5,900 [2784]	5,900 [2784]	5,900 [2784]	5,900 [2784]
No. Motors/HP	1 at 1/2 HP	1 at 1/2 HP			
Motor RPM	900/800	900/800	900/800	900/800	900/800
Indoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]
Drive Type	Direct	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1	1
Motor HP	3/4	3/4	1.5	3/4	1
Motor RPM	1050	1050	1400	1050	1050
Motor Frame Size	48	48	48	48	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16
[mm´x mm x mm]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]
Refrigerant Charge Oz. [g]	75 [2126.2]	75 [2126.2]	75 [2126.2]	75 [2126.2]	75 [2126.2]
Weights					
Net Weight lbs. [kg]	581.3 [263.7]	581.3 [263.7]	581.3 [263.7]	578.17 [262.3]	578.17 [262.3]
			619.3 [280.9]	616.17 [279.5]	616.17 [279.5]

See Page 22 for Notes.

Model RGECYC Series	060AJT	060ACT	060ACU	060ADT	060ADU
Cooling Performance ^A					
Cooling Capacity Btu/h [kW]	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]
EER/IEER ^D	12/16.2	12/16.2	12/16.2	12/16.2	12/16.2
Nominal CFM/AHRI Rated CFM [L/s]	2,000/1,840 [944/868]	2,000/1,840 [944/868]	2,000/1,840 [944/868]	2,000/1,840 [944/868]	2,000/1,840 [944/868
AHRI Net Cooling Capacity Btu/h [kW]	57,000 [16.71]	57,000 [16.71]	57,000 [16.71]	57,000 [16.71]	57,000 [16.71]
Net Sensible Capacity Btu/h [kW]	43,000 [12.6]	43,000 [12.6]	43,000 [12.6]	43,000 [12.6]	43,000 [12.6]
Net Latent Capacity Btu/h [kW]	14,000 [4.1]	14,000 [4.1]	14,000 [4.1]	14,000 [4.1]	14,000 [4.1]
Net System Power kW	5.38	5.38	5.38	5.38	5.38
Compressor					
No./Stage/Type	1/2/Scroll	1/2/Scroll	1/2/Scroll	1/2/Scroll	1/2/Scroll
Outdoor Sound Rating (dB) ^C	86	86	86	86	86
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Rifled: Tube Size OD or MicroChannel:					
Depth in. [mm]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]	0.71 [18]
Face Area sq. ft. [sq. m]	16.66 [1.55]	16.66 [1.55]	16.66 [1.55]	16.66 [1.55]	16.66 [1.55]
Rows/FPI [FPcm]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]	1/23 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Rifled: Tube Size OD or MicroChannel: Depth in. [mm]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]	1.26 [32]
Face Area sq. ft. [sq. m]	7.47 [0.69]	7.47 [0.69]	7.47 [0.69]	7.47 [0.69]	7.47 [0.69]
Rows/FPI [FPcm]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]	1/20 [8]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]	1/0.75 [19.05]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]	1/26 [660.4]
Drive Type/No. Speeds	Direct/2	Direct/2	Direct/2	Direct/2	Direct/2
CFM [L/s]	5,900 [2,784]	5,900 [2,784]	5,900 [2,784]	5,900 [2,784]	5,900 [2,784]
No. Motors/HP	1 at 1/2 HP	1 at 1/2 HP			
Motor RPM	900/800	900/800	900/800	900/800	900/800
Indoor Fan - Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]	1/5.6 [142.2]
Drive Type	Direct	Direct	Direct	Direct	Direct
No. Speeds	Multiple	Multiple	Multiple	Multiple	Multiple
No. Motors	1	1	1	1	1
Motor HP	1	1	1.5	1	1.2
Motor RPM	1050	1050	1400	1050	1300
Motor Frame Size	48	48	48	48	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16	(4) 2x16x16
[mm x mm x mm]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]	[51x406x406]
Refrigerant Charge Oz. [g]	81 [2296.3]	81 [2296.3]	81 [2296.3]	81 [2296.3]	81 [2296.3]
Weights					
Net Weight Ibs. [kg]	583.8 [264.8]	583.8 [264.8]	583.8 [264.8]	583.8 [264.8]	583.8 [264.8]
Ship Weight Ibs. [kg]	621.8 [282.1]	621.8 [282.1]	621.8 [282.1]	621.8 [282.1]	621.8 [282.1]

See Page 22 for Notes.

Russell® By Rheem | RGEC Packaged Gas Electric Units

NOTES:

- A. Cooling Performance is rated at 95°F ambient, 80°F entering dry bulb, 67°F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to 20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240.
- B. EER/EER2 and/or SEER2 are rated at AHRI conditions and in accordance with DOE test procedures.
- C. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.
- D. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 340/360.

WEIGHTED SOUND POWER LEVEL (dBA)

Unit Size – Series	Standard		TYPICA	L OCTAVE BA	ND SPECTRU	IM (dBA with	out tone adju	stment)	
Unit Size – Series	Rating (dBA)	63	125	250	500	1000	2000	4000	8000
RGECYB036	78.0	48.7	58.1	63.9	67.0	67.8	64.7	60.6	54.7
RGECYB048	85.3	58.2	64.7	75.1	74.7	75.5	72.3	67.8	61.0
RGECYB060	86.0	58.2	62.5	76.7	75.0	75.2	77.0	69.0	60.0
RGECYB072	85.0	54.9	67.3	69.4	73.8	73.4	71.2	69.6	65.3
RGECYC036	79.0	50.4	63.0	65.0	69.0	70.0	66.0	62.0	56.0
RGECYC048	83.0	49.3	63.0	69.0	73.0	73.0	70.0	66.0	59.0
RGECYC060	86.0	62.2	65.0	74.0	76.0	76.0	72.0	68.0	61.0

Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

RGECYB & RGECYC HEATING PERFORMANCE

		208-230V & 575V				
Tonnage	3-1	Fon	4-1	ſon	5-1	Fon
Heating Input Btu/h [kW] (High-Fire / Low-Fire)	75,000/52,500 [21.98/115.39]	100,000/70,000 [29.31/20.52]	75,000/52,500 [21.98/115.39]	120,000/84,000 [35.17/24.62]	75,000/52,500 [21.98/115.39]	120,000/84,000 [35.17/24.62]
Heating Output Btu/h [kW] (High-Fire / Low-Fire)	60,750/42,525 [17.80/12.46]	81,000/56,700 [23.74/16.62]	60,750/42,525 [17.80/12.46]	97,200/68,040 [28.49/19.94]	60,750/42,525 [17.80/12.46]	97,200/68,040 [28.49/19.94]
High-Fire Rise Range °F [°C]	25-55 [13.9-30.6]	35-65 [19.4-36.1]	25-55 [13.9-30.6]	40-70 [22.2-38.9]	25-55 [13.9-30.6]	35-65 [22.2-38.9]
Low-Fire Rise Range °F [°C]	20-50 [11.1-27.8]	25-55 [13.9-30.6]	20-50 [11.1-27.8]	30-60 [16-33]	20-50 [11.1-27.8]	25-55 [13.9-30.6]
Main Limit Temp °F	145	125	145	125	145	125
Rollout Temp. °F	250	250	250	250	250	250
Rating ESP In. W.C.	0.23	0.28	0.23	0.28	0.23	0.28
Maximum ESP In. W.C.	0.80	0.80	0.80	0.80	0.80	0.80
Max Outlet Air Temp °F [°C]	180 [82.2]	190 [87.8]	180 [82.2]	180 [82.2]	180 [82.2]	180 [82.2]
% AFUE	81.0	81.0	81.0	81.0	81.0	81.0
% Steady State Efficiency	81.0	81.0	81.0	81.0	81.0	81.0

		460V				
Tonnage	3-	Fon	4-1	Fon	5-1	Fon
Heating Input Btu/h [kW] (High-Fire / Low-Fire)	75,000/52,500 [21.98/115.39]	100,000/70,000 [29.31/20.52]	75,000/52,500 [21.98/115.39]	120,000/84,000 [35.17/24.62]	75,000/52,500 [21.98/115.39]	120,000/84,000 [35.17/24.62]
Heating Output Btu/h [kW] (High-Fire / Low-Fire)	60,750/42,525 [17.80/12.46]	81,000/56,700 [23.74/16.62]	60,750/42,525 [17.80/12.46]	97,200/68,040 [28.49/19.94]	60,750/42,525 [17.80/12.46]	97,200/68,040 [28.49/19.94]
High-Fire Rise Range °F [°C]	30-60 [16.7-33.3]	35-65 [19.4-36.1]	30-60 [16.7-33.3]	40-70 [22.2-38.9]	30-60 [16.7-33.3]	35-65 [19.4-36.1]
Low-Fire Rise Range °F [°C]	25-55 [13.9-30.6]	30-60 [16.7-33.3]	20-50 [11.1-27.8]	35-65 [19.4-36.1]	20-50 [11.1-27.8]	30-60 [16.7-33.3]
Main Limit Temp °F	145	125	145	125	145	125
Rollout Temp. °F	250	250	250	250	250	250
Rating ESP In. W.C.	0.23	0.28	0.23	0.28	0.23	0.28
Maximum ESP In. W.C.	0.80	0.80	0.80	0.80	0.80	0.80
Max Outlet Air Temp °F [°C]	180 [82.2]	190 [87.8]	180 [82.2]	180 [82.2]	180 [82.2]	180 [82.2]
% Steady State Efficiency	81.0	81.0	81.0	81.0	81.0	81.0

Gas Valve Connection Pipe Size In. [mm] .50 [12.7]

RGECYB & RGECYC HEATING PERFORMANCE (CONTINUED)

	208-230V & 575V	
Tonnage	6-	Ton
Heating Input Btu/h [kW] (High-Fire / Low-Fire)	75,000/52,500 [21.98/115.39]	120,000/84,000 [35.17/24.62]
Heating Output Btu/h [kW] (High-Fire / Low-Fire)	60,750/42,525 [17.80/12.46]	97,200/68,040 [28.49/19.94]
High-Fire Rise Range °F [°C]	25-55 [13.9-30.6]	35-65 [22.2-38.9]
Low-Fire Rise Range °F [°C]	20-50 [11.1-27.8]	30-60 [16.7-33.3]
Main Limit Temp °F	145	125
Rollout Temp. °F	250	250
Rating ESP In. W.C.	0.23	0.28
Maximum ESP In. W.C.	0.80	0.80
Max Outlet Air Temp °F [°C]	180 [82.2]	180 [82.2]
% AFUE	81.0	81.0
% Steady State Efficiency	81.0	81.0

	460V	
Tonnage	6-	Ton
Heating Input Btu/h [kW] (High-Fire / Low-Fire)	75,000/52,500 [21.98/115.39]	120,000/84,000 [35.17/24.62]
Heating Output Btu/h [kW] (High-Fire / Low-Fire)	60,750/42,525 [17.80/12.46]	97,200/68,040 [28.49/19.94]
High-Fire Rise Range °F [°C]	30-60 [16.7-33.3]	35-65 [19.4-36.1]
Low-Fire Rise Range °F [°C]	20-50 [11.1-27.8]	30-60 [16.7-33.3]
Main Limit Temp °F	145	125
Rollout Temp. °F	250	250
Rating ESP In. W.C.	0.23	0.28
Maximum ESP In. W.C.	0.80	0.80
Max Outlet Air Temp °F [°C]	180 [82.2]	180 [82.2]
% Steady State Efficiency	81.0	81.0

Gas Valve Connection Pipe Size In. [mm] .50 [12.7]

RGECYB036 - ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①												
	wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]			
		1325 [625]	1175 [555]	950 [448]	1325 [625]	1175 [555]	950 [448]	1325 [625]	1175 [555]	950 [448]		
D	R 1	.05	.09	.12		.09	.12	.05	.09	.12		
75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	44.3 [13.0] 26.0 [7.6] 2.2	43.3 [12.7] 24.6 [7.2] 2.2	41.8 [12.3] 22.4 [6.6] 2.2	41.5 [12.2] 29.6 [8.7] 2.3	40.5 [11.9] 27.9 [8.2] 2.2	39.1 [11.5] 25.4 [7.4] 2.2	39.1 [11.5] 33.7 [9.9] 2.2	38.2 [11.2] 31.8 [9.3] 2.2	36.9 [10.8] 28.9 [8.5] 2.2		
80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	43.0 [12.6] 25.5 [7.5] 2.4	42.0 [12.3] 24.0 [7.0] 2.3	40.6 [11.9] 21.9 [6.4] 2.3	40.2 [11.8] 29.0 [8.5] 2.4	39.3 [11.5] 27.4 [8.0] 2.4	37.9 [11.1] 24.9 [7.3] 2.3	37.8 [11.1] 33.1 [9.7] 2.4	37.0 [10.8] 31.3 [9.2] 2.3	35.7 [10.5] 28.5 [8.4] 2.3		
85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	41.7 [12.2] 24.8 [7.3] 2.5	40.7 [11.9] 23.4 [6.9] 2.5	39.3 [11.5] 21.3 [6.2] 2.4	38.8 [11.4] 28.4 [8.3] 2.5	37.9 [11.1] 26.8 [7.9] 2.5	36.6 [10.7] 24.4 [7.2] 2.4	36.5 [10.7] 32.5 [9.5] 2.5	35.7 [10.5] 30.6 [9.0] 2.5	34.4 [10.1] 27.9 [8.2] 2.4		
90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	40.2 [11.8] 24.1 [7.1] 2.6	39.3 [11.5] 22.7 [6.7] 2.6	38.0 [11.1] 20.7 [6.1] 2.5	37.4 [11.0] 27.7 [8.1] 2.6	36.5 [10.7] 26.1 [7.6] 2.6	35.3 [10.3] 23.8 [7.0] 2.6	35.0 [10.3] 31.7 [9.3] 2.6	34.3 [10.1] 30.0 [8.8] 2.6	33.1 [9.7] 27.3 [8.0] 2.6		
95°F [35°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	38.7 [11.3] 23.3 [6.8] 2.7	37.9 [11.1] 22.0 [6.4] 2.7	36.5 [10.7] 20.0 [5.9] 2.7	35.9 [10.5] 26.9 [7.9] 2.8	35.1 [10.3] 25.3 [7.4] 2.7	33.8 [9.9] 23.1 [6.8] 2.7	33.5 [9.8] 31.0 [9.1] 2.8	32.8 [9.6] 29.2 [8.6] 2.7	31.6 [9.3] 26.6 [7.8] 2.7		
100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	37.2 [10.9] 22.4 [6.6] 2.9	36.3 [10.6] 21.2 [6.2] 2.8	35.0 [10.3] 19.3 [5.7] 2.8	34.3 [10.1] 26.0 [7.6] 2.9	33.5 [9.8] 24.5 [7.2] 2.9	32.4 [9.5] 22.3 [6.5] 2.8	32.0 [9.4] 30.1 [8.8] 2.9	31.2 [9.1] 28.4 [8.3] 2.9	30.2 [8.9] 25.9 [7.6] 2.8		
105°F [40.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	35.5 [10.4] 21.5 [6.3] 3.0	34.7 [10.2] 20.3 [5.9] 3.0	33.5 [9.8] 18.5 [5.4] 2.9	32.7 [9.6] 25.0 [7.3] 3.0	31.9 [9.3] 23.6 [6.9] 3.0	30.8 [9.0] 21.5 [6.3] 2.9	30.3 [8.9] 29.1 [8.5] 3.0	29.6 [8.7] 27.5 [8.1] 3.0	28.6 [8.4] 25.0 [7.3] 2.9		
110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	33.8 [9.9] 20.5 [6.0] 3.1	33.0 [9.7] 19.3 [5.7] 3.1	31.9 [9.3] 17.6 [5.2] 3.1	30.9 [9.1] 24.0 [7.0] 3.2	30.2 [8.9] 22.7 [6.7] 3.1	29.2 [8.6] 20.6 [6.0] 3.1	28.6 [8.4] 28.1 [8.2] 3.2	27.9 [8.2] 26.5 [7.8] 3.1	27.0 [7.9] 24.2 [7.1] 3.1		
115°F [46.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	32.0 [9.4] 19.4 [5.7] 3.3	31.3 [9.2] 18.3 [5.4] 3.2	30.2 [8.9] 16.6 [4.9] 3.2	29.1 [8.5] 22.9 [6.7] 3.3	28.5 [8.4] 21.6 [6.3] 3.3	27.5 [8.1] 19.7 [5.8] 3.2	26.8 [7.9] 26.8 [7.9] 3.3	26.2 [7.7] 25.5 [7.5] 3.2	25.3 [7.4] 23.2 [6.8] 3.2		
120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	30.1 [8.8] 18.2 [5.3] 3.4	29.4 [8.6] 17.2 [5.0] 3.4	28.4 [8.3] 15.6 [4.6] 3.3	27.3 [8.0] 21.7 [6.4] 3.4	26.7 [7.8] 20.5 [6.0] 3.4	25.7 [7.5] 18.7 [5.5] 3.3	24.9 [7.3] 24.9 [7.3] 3.4	24.4 [7.2] 24.4 [7.2] 3.4	23.5 [6.9] 22.2 [6.5] 3.3		
125°F [51.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	28.2 [8.3] 16.9 [5.0] 3.5	27.5 [8.1] 16.0 [4.7] 3.5	26.6 [7.8] 14.6 [4.3] 3.4	25.3 [7.4] 20.5 [6.0] 3.6	24.8 [7.3] 19.3 [5.7] 3.5	23.9 [7.0] 17.6 [5.2] 3.5	23.0 [6.7] 23.0 [6.7] 3.5	22.5 [6.6] 22.5 [6.6] 3.5	21.7 [6.4] 21.1 [6.2] 3.4		
-	CF [23.9°C] 80°F [26.7°C] 85°F [29.4°C] 90°F [32.2°C] 95°F [35°C] 100°F [37.8°C] 105°F [40.6°C] 110°F [43.3°C] 115°F [46.1°C] 120°F [48.9°C] 125°F [51.7°C]	CFM [L/s]DR ①75°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power80°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power85°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power90°FTotal kBtu/h [kW] Power100°FTotal kBtu/h [kW] Power100°FTotal kBtu/h [kW] Power100°FTotal kBtu/h [kW] Power100°FTotal kBtu/h [kW] Power100°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power105°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power110°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power115°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power120°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power120°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power125°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power125°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power125°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power125°FTotal kBtu/h [kW] Sens kBtu/h [kW] Power	CFM [L/s] 1325 [625] DR .05 75°F Total kBtu/h [kW] 26.0 [7.6] 23.9°C] Sens kBtu/h [kW] 26.0 [7.6] Power 2.2 80°F Total kBtu/h [kW] 25.5 [7.5] Power 2.4 85°F Total kBtu/h [kW] 24.8 [7.3] Power 2.5 90°F Total kBtu/h [kW] 24.8 [7.3] Power 2.5 90°F Total kBtu/h [kW] 24.1 [7.1] Power 2.6 95°F Total kBtu/h [kW] 24.1 [7.1] Power 2.6 95°F Total kBtu/h [kW] 23.3 [6.8] Power 2.7 100°F Total kBtu/h [kW] 23.7 [10.9] Sens kBtu/h [kW] 23.5 [10.4] Power 2.4 105°F Total kBtu/h [kW] 35.5 [10.4] Power 3.0 110°F Total kBtu/h [kW] 32.0 [9.4] Yener 3.0 110°F Tot	CFM [L/s] 1325 [625] 1175 [555] DR 0 .05 .09 75°F [23.9°C] Total kBtu/n [kW] Sens kBtu/n [kW] Power 44.3 [13.0] 26.0 [7.6] 43.3 [12.7] 24.6 [7.2] 80°F [26.7°C] Total kBtu/n [kW] Sens kBtu/n [kW] 43.0 [12.6] 42.0 [12.3] 85°F [26.7°C] Total kBtu/n [kW] Sens kBtu/n [kW] 43.0 [12.6] 42.0 [12.3] 85°F [29.4°C] Total kBtu/n [kW] 25.5 [7.5] 24.0 [7.0] 90°F [32.2°C] Total kBtu/n [kW] 24.8 [7.3] 23.4 [6.9] Power 2.5 2.5 2.5 90°F [32.2°C] Total kBtu/n [kW] 24.1 [7.1] 22.7 [6.7] Power 2.6 2.6 2.6 95°F [35°C] Total kBtu/n [kW] 23.3 [6.8] 22.0 [6.4] Power 2.7 2.7 2.7 100°F [37.8°C] Total kBtu/n [kW] 35.5 [10.4] 34.7 [10.2] Power 3.0 3.0 9.7] 3.0 105°F [43.3°C] Total kBtu/n [kW] 35.5 [10.4] 34.7 [10.2] Power <t< td=""><td>CFM [L/s] 1325 [625] 1175 [555] 950 [448] DR ⊕ .05 .09 .12 75°F [23.9°C] Total kBtu/h [kW] Sens kBtu/h [kW] Power 44.3 [13.0] 26.0 [7.6] 2.2 43.3 [12.7] 24.6 [7.2] 22.4 41.8 [12.3] 22.4 22.4 [6.6] 2.2 80°F [26.7°C] Total kBtu/h [kW] Sens kBtu/h [kW] Power 43.0 [12.6] 2.5 42.0 [12.3] 24.0 [7.0] 40.6 [11.9] 21.9 [6.4] 2.4 2.3 2.3 85°F [29.4°C] Total kBtu/h [kW] Power 41.7 [12.2] 2.5 40.7 [11.9] 2.5 39.3 [11.5] 2.5 38.0 [11.1] 20.7 [6.1] 20.7 [6.1] 20.0 [5.9] 2.7 38.0 [11.1] 20.7 [6.1] 20.0 [5.9] 2.7 90°F [35°F [35°F] Total kBtu/h [kW] Sens kBtu/h [kW] Sens kBtu/h [kW] Sens kBtu/h [kW] 21.5 [6.3] 20.0 [5.9] 2.7 36.3 [10.6] 21.2 [6.2] 21.2 [6.2] 21.2 [6.2] 21.3 [5.9] 31.5 [5.4] 30.0 35.5 [10.4] 31.3 [9.2] 30.0 [5.7] 31.9 [9.3] 17.6 [5.2] 31.1 100°F [40.6°C] Total kBtu/h [kW] Sens kBtu/h [kW] Sens</td><td>CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] DR ① .05 .09 .12 .05 75°F [23.9°C] Total kBtu/h [kW] 24.3 [13.0] 24.6 [7.2] 22.4 [6.6] 29.6 [8.7] 80°F [26.7°C] Total kBtu/h [kW] 2.2 2.2 2.2 2.3 2.3 80°F [26.7°C] Total kBtu/h [kW] 43.0 [12.6] 42.0 [12.3] 40.6 [11.9] 40.2 [11.8] 29.0 [8.5] 90°F [26.7°C] Total kBtu/h [kW] 25.5 [7.5] 24.0 [7.0] 21.9 [6.4] 29.0 [8.5] 90°F [29.4°C] Total kBtu/h [kW] 24.1 [7.1] 23.4 [6.9] 21.3 [6.2] 24.4 2.5 90°F [35°C] Total kBtu/h [kW] 24.1 [7.1] 22.7 [6.7] 20.7 [6.1] 27.7 [8.1] 26.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.8 2.6 2.9 2.8 2.8 2.9 2.6.</td><td>CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] DR ① .05 .09 .12 .05 .09 Toral kBtu/n [kW] 44.3 [13.0] 43.3 [12.7] 41.8 [12.3] 41.5 [12.2] 40.5 [11.9] 23.9°C] Sens kBtu/n [kW] 26.0 [7.6] 24.6 [7.2] 22.4 16.6] 29.0 [8.5] 27.4 8.2] 80°F Total kBtu/n [kW] 43.0 [12.6] 42.0 [12.3] 40.6 [11.9] 40.2 [11.8] 39.3 [11.5] 38.8 [11.4] 37.9 [11.1] 26.7°C] Power 2.4 2.3 2.3 2.4 2.4 2.3 2.4 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5</td><td>CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] 950 [448] DR 0 05 0.9 .12 0.5 0.9 .12 75°F [23.9°C] Total kBtu/n [kW] 44.3 [13.0] 43.3 [12.7] 41.8 [12.3] 41.5 [12.2] 40.5 [11.9] 39.1 [11.5] 80°F [25.7°C] Sens KBtu/n [kW] 43.0 [12.6] 22.2 2.2</td><td>CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] 950 [448] 1325 [625] DR <t< td=""><td>CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] DR 0 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .22 2.5 3.0 1.11 3.1</td></t<></td></t<>	CFM [L/s] 1325 [625] 1175 [555] 950 [448] DR ⊕ .05 .09 .12 75°F [23.9°C] Total kBtu/h [kW] Sens kBtu/h [kW] Power 44.3 [13.0] 26.0 [7.6] 2.2 43.3 [12.7] 24.6 [7.2] 22.4 41.8 [12.3] 22.4 22.4 [6.6] 2.2 80°F [26.7°C] Total kBtu/h [kW] Sens kBtu/h [kW] Power 43.0 [12.6] 2.5 42.0 [12.3] 24.0 [7.0] 40.6 [11.9] 21.9 [6.4] 2.4 2.3 2.3 85°F [29.4°C] Total kBtu/h [kW] Power 41.7 [12.2] 2.5 40.7 [11.9] 2.5 39.3 [11.5] 2.5 38.0 [11.1] 20.7 [6.1] 20.7 [6.1] 20.0 [5.9] 2.7 38.0 [11.1] 20.7 [6.1] 20.0 [5.9] 2.7 90°F [35°F [35°F] Total kBtu/h [kW] Sens kBtu/h [kW] Sens kBtu/h [kW] Sens kBtu/h [kW] 21.5 [6.3] 20.0 [5.9] 2.7 36.3 [10.6] 21.2 [6.2] 21.2 [6.2] 21.2 [6.2] 21.3 [5.9] 31.5 [5.4] 30.0 35.5 [10.4] 31.3 [9.2] 30.0 [5.7] 31.9 [9.3] 17.6 [5.2] 31.1 100°F [40.6°C] Total kBtu/h [kW] Sens	CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] DR ① .05 .09 .12 .05 75°F [23.9°C] Total kBtu/h [kW] 24.3 [13.0] 24.6 [7.2] 22.4 [6.6] 29.6 [8.7] 80°F [26.7°C] Total kBtu/h [kW] 2.2 2.2 2.2 2.3 2.3 80°F [26.7°C] Total kBtu/h [kW] 43.0 [12.6] 42.0 [12.3] 40.6 [11.9] 40.2 [11.8] 29.0 [8.5] 90°F [26.7°C] Total kBtu/h [kW] 25.5 [7.5] 24.0 [7.0] 21.9 [6.4] 29.0 [8.5] 90°F [29.4°C] Total kBtu/h [kW] 24.1 [7.1] 23.4 [6.9] 21.3 [6.2] 24.4 2.5 90°F [35°C] Total kBtu/h [kW] 24.1 [7.1] 22.7 [6.7] 20.7 [6.1] 27.7 [8.1] 26.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.8 2.6 2.9 2.8 2.8 2.9 2.6.	CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] DR ① .05 .09 .12 .05 .09 Toral kBtu/n [kW] 44.3 [13.0] 43.3 [12.7] 41.8 [12.3] 41.5 [12.2] 40.5 [11.9] 23.9°C] Sens kBtu/n [kW] 26.0 [7.6] 24.6 [7.2] 22.4 16.6] 29.0 [8.5] 27.4 8.2] 80°F Total kBtu/n [kW] 43.0 [12.6] 42.0 [12.3] 40.6 [11.9] 40.2 [11.8] 39.3 [11.5] 38.8 [11.4] 37.9 [11.1] 26.7°C] Power 2.4 2.3 2.3 2.4 2.4 2.3 2.4 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] 950 [448] DR 0 05 0.9 .12 0.5 0.9 .12 75°F [23.9°C] Total kBtu/n [kW] 44.3 [13.0] 43.3 [12.7] 41.8 [12.3] 41.5 [12.2] 40.5 [11.9] 39.1 [11.5] 80°F [25.7°C] Sens KBtu/n [kW] 43.0 [12.6] 22.2 2.2	CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] 950 [448] 1325 [625] DR <t< td=""><td>CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] DR 0 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .22 2.5 3.0 1.11 3.1</td></t<>	CFM [L/s] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] 950 [448] 1325 [625] 1175 [555] DR 0 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .12 0.5 0.9 .22 2.5 3.0 1.11 3.1		

i otai Sens —Sensible capacity x 1000 Btu/h Power —kW input NOTES: \odot When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

dbE —Entering air dry bulb wbE—Entering air wet bulb

				RGECYB048	- ENTERING II	NDOOR AIR @		dbE ①			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	1775 [838]	1575 [743]	1275 [602]	1775 [838]	1575 [743]	1275 [602]	1775 [838]	1575 [743]	1275 [602]
		DR ①	.05	.09	.12	.05	.09	.12	.05	.09	.12
0	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	57.1 [16.7] 33.2 [9.7] 3.4	55.8 [16.4] 31.4 [9.2] 3.4	53.9 [15.8] 28.6 [8.4] 3.3	54.2 [15.9] 38.6 [11.3] 3.4	53.0 [15.5] 36.5 [10.7] 3.4	51.2 [15.0] 33.2 [9.7] 3.3	51.4 [15.1] 44.0 [12.9] 3.4	50.2 [14.7] 41.5 [12.2] 3.3	48.5 [14.2] 37.8 [11.1] 3.3
U T D	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	55.7 [16.3] 32.4 [9.5] 3.5	54.4 [15.9] 30.6 [9.0] 3.5	52.5 [15.4] 27.9 [8.2] 3.4	52.8 [15.5] 37.8 [11.1] 3.6	51.6 [15.1] 35.7 [10.5] 3.5	49.9 [14.6] 32.5 [9.5] 3.5	50.0 [14.7] 43.2 [12.7] 3.5	48.9 [14.3] 40.7 [11.9] 3.5	47.2 [13.8] 37.1 [10.9] 3.4
0 0 R	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	54.3 [15.9] 31.6 [9.3] 3.7	53.1 [15.6] 29.8 [8.7] 3.6	51.2 [15.0] 27.2 [8.0] 3.6	51.4 [15.1] 36.9 [10.8] 3.7	50.3 [14.7] 34.9 [10.2] 3.7	48.5 [14.2] 31.8 [9.3] 3.6	48.6 [14.2] 42.3 [12.4] 3.7	47.5 [13.9] 40.0 [11.7] 3.6	45.8 [13.4] 36.4 [10.7] 3.6
D R Y	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	52.9 [15.5] 30.7 [9.0] 3.8	51.7 [15.2] 29.0 [8.5] 3.8	49.9 [14.6] 26.4 [7.7] 3.7	50.0 [14.7] 36.1 [10.6] 3.8	48.9 [14.3] 34.1 [10.0] 3.8	47.2 [13.8] 31.1 [9.1] 3.7	47.2 [13.8] 41.5 [12.2] 3.8	46.1 [13.5] 39.2 [11.5] 3.7	44.5 [13.0] 35.7 [10.5] 3.7
т В U	95°F [35°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	51.5 [15.1] 29.9 [8.8] 3.9	50.3 [14.7] 28.2 [8.3] 3.9	48.6 [14.2] 25.7 [7.5] 3.8	48.6 [14.2] 35.3 [10.3] 4.0	47.5 [13.9] 33.3 [9.8] 3.9	45.9 [13.5] 30.3 [8.9] 3.9	45.8 [13.4] 40.7 [11.9] 3.9	44.8 [13.1] 38.4 [11.3] 3.9	43.2 [12.7] 35.0 [10.3] 3.8
L B	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	50.1 [14.7] 29.1 [8.5] 4.1	49.0 [14.4] 27.4 [8.0] 4.0	47.3 [13.9] 25.0 [7.3] 4.0	47.2 [13.8] 34.5 [10.1] 4.1	46.2 [13.5] 32.5 [9.5] 4.1	44.6 [13.1] 29.6 [8.7] 4.0	44.4 [13.0] 39.8 [11.7] 4.1	43.4 [12.7] 37.6 [11.0] 4.0	41.9 [12.3] 34.3 [10.1] 4.0
T E M P	105°F [40.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	48.7 [14.3] 28.2 [8.3] 4.2	47.6 [14.0] 26.7 [7.8] 4.2	45.9 [13.5] 24.3 [7.1] 4.1	45.8 [13.4] 33.6 [9.8] 4.2	44.8 [13.1] 31.7 [9.3] 4.2	43.3 [12.7] 28.9 [8.5] 4.1	43.0 [12.6] 39.0 [11.4] 4.2	42.0 [12.3] 36.8 [10.8] 4.2	40.6 [11.9] 33.5 [9.8] 4.1
E R	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	47.3 [13.9] 27.4 [8.0] 4.4	46.2 [13.5] 25.9 [7.6] 4.3	44.6 [13.1] 23.6 [6.9] 4.2	44.4 [13.0] 32.8 [9.6] 4.4	43.4 [12.7] 31.0 [9.1] 4.3	41.9 [12.3] 28.2 [8.3] 4.3	41.6 [12.2] 38.2 [11.2] 4.3	40.6 [11.9] 36.0 [10.6] 4.3	39.2 [11.5] 32.8 [9.6] 4.2
A T U R E °F [°C]	115°F [46.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	45.9 [13.5] 26.6 [7.8] 4.5	44.9 [13.2] 25.1 [7.4] 4.4	43.3 [12.7] 22.9 [6.7] 4.4	43.0 [12.6] 32.0 [9.4] 4.5	42.1 [12.3] 30.2 [8.9] 4.5	40.6 [11.9] 27.5 [8.1] 4.4	40.2 [11.8] 37.3 [10.9] 4.5	39.3 [11.5] 35.2 [10.3] 4.4	37.9 [11.1] 32.1 [9.4] 4.4
	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	44.5 [13.0] 25.7 [7.5] 4.6	43.5 [12.7] 24.3 [7.1] 4.6	42.0 [12.3] 22.1 [6.5] 4.5	41.6 [12.2] 31.1 [9.1] 4.7	40.7 [11.9] 29.4 [8.6] 4.6	39.3 [11.5] 26.8 [7.9] 4.5	38.8 [11.4] 36.5 [10.7] 4.6	37.9 [11.1] 34.5 [10.1] 4.6	36.6 [10.7] 31.4 [9.2] 4.5
	125°F [51.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	43.1 [12.6] 24.9 [7.3] 4.8	42.1 [12.3] 23.5 [6.9] 4.7	40.7 [11.9] 21.4 [6.3] 4.6	40.2 [11.8] 30.3 [8.9] 4.8	39.3 [11.5] 28.6 [8.4] 4.7	38.0 [11.1] 26.1 [7.6] 4.7	37.4 [11.0] 35.7 [10.5] 4.8	36.5 [10.7] 33.7 [9.9] 4.7	35.3 [10.3] 30.7 [9.0] 4.6

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 Btu/h Sens —Sensible capacity x 1000 Btu/h Power —kW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

				RGECYB060	- ENTERING II	NDOOR AIR @ 3	80°F [26.7°C]	dbE ①			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	2200 [1038]	1825 [861]	1600 [755]	2200 [1038]	1825 [861]	1600 [755]	2200 [1038]	1825 [861]	1600 [755]
		R 1	.05	.09	.12	.05	.09	.12	.05	.09	.12
0	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	72.1 [21.1] 43.2 [12.7] 4.2	69.5 [20.4] 39.4 [11.5] 4.1	67.9 [19.9] 37.2 [10.9] 4.1	68.4 [20.0] 48.5 [14.2] 4.2	66.0 [19.3] 44.2 [13.0] 4.2	64.5 [18.9] 41.7 [12.2] 4.1	64.9 [19.0] 53.9 [15.8] 4.2	62.6 [18.3] 49.2 [14.4] 4.1	61.1 [17.9] 46.3 [13.6] 4.1
U T D O R	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	70.4 [20.6] 42.4 [12.4] 4.4	67.9 [19.9] 38.7 [11.3] 4.4	66.4 [19.5] 36.5 [10.7] 4.3	66.8 [19.6] 47.7 [14.0] 4.5	64.4 [18.9] 43.5 [12.7] 4.4	62.9 [18.4] 41.0 [12.0] 4.4	63.2 [18.5] 53.1 [15.6] 4.5	60.9 [17.8] 48.4 [14.2] 4.4	59.6 [17.5] 45.6 [13.4] 4.3
	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	68.6 [20.1] 41.5 [12.2] 4.7	66.1 [19.4] 37.9 [11.1] 4.6	64.7 [19.0] 35.7 [10.5] 4.6	64.9 [19.0] 46.7 [13.7] 4.7	62.6 [18.3] 42.7 [12.5] 4.6	61.2 [17.9] 40.2 [11.8] 4.6	61.4 [18.0] 52.1 [15.3] 4.7	59.2 [17.4] 47.6 [14.0] 4.6	57.9 [17.0] 44.8 [13.1] 4.6
D R Y	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	66.7 [19.5] 40.4 [11.8] 4.9	64.3 [18.8] 36.9 [10.8] 4.8	62.8 [18.4] 34.7 [10.2] 4.8	6.03 [18.5] 45.6 [13.4] 5.0	60.7 [17.8] 41.7 [12.2] 4.9	59.4 [17.4] 39.3 [11.5] 4.8	59.5 [17.4] 51.0 [14.9] 4.9	57.3 [16.8] 46.6 [13.7] 4.8	56.0 [16.4] 43.9 [12.9] 4.8
BU	95°F [35°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	64.6 [18.9] 39.2 [11.5] 5.2	62.2 [18.2] 35.7 [10.5] 5.1	60.8 [17.8] 33.7 [9.9] 5.0	60.9 [17.8] 44.4 [13.0] 5.2	58.7 [17.2] 40.5 [11.9] 5.1	57.4 [16.8] 38.2 [11.2] 5.0	57.4 [16.8] 49.8 [14.6] 5.2	55.3 [16.2] 45.4 [13.3] 5.1	54.1 [15.9] 42.8 [12.5] 5.0
L B	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	62.3 [18.3] 37.8 [11.1] 5.4	60.1 [17.6] 34.5 [10.1] 5.3	58.7 [17.2] 32.5 [9.5] 5.2	58.7 [17.2] 43.0 [12.6] 5.4	56.6 [16.6] 39.3 [11.5] 5.3	55.3 [16.2] 37.0 [10.8] 5.3	55.1 [16.1] 48.4 [14.2] 5.4	53.1 [15.6] 44.2 [13.0] 5.3	52.0 [15.2] 41.6 [12.2] 5.2
T E M P	105°F [40.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	60.0 [17.6] 36.2 [10.6] 5.6	57.8 [16.9] 33.1 [9.7] 5.5	56.5 [16.6] 31.2 [9.1] 5.5	56.3 [16.5] 41.5 [12.2] 5.7	54.3 [15.9] 37.9 [11.1] 5.6	53.1 [15.6] 35.7 [10.5] 5.5	52.8 [15.5] 46.9 [13.7] 5.6	50.9 [14.9] 42.8 [12.5] 5.5	49.7 [14.6] 40.3 [11.8] 5.5
E R A	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	57.5 [16.9] 34.6 [10.1] 5.9	55.4 [16.2] 31.5 [9.2] 5.8	54.2 [15.9] 29.7 [8.7] 5.7	53.8 [15.8] 39.8 [11.7] 5.9	51.9 [15.2] 36.3 [10.6] 5.8	50.7 [14.9] 34.2 [10.0] 5.7	50.3 [14.7] 45.2 [13.2] 5.9	48.4 [14.2] 41.2 [12.1] 5.8	47.4 [13.9] 38.9 [11.4] 5.7
T U R	115°F [46.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	54.8 [16.1] 32.7 [9.6] 6.1	52.8 [15.5] 29.9 [8.8] 6.0	51.7 [15.2] 28.2 [8.3] 5.9	51.2 [15.0] 38.0 [11.1] 6.1	49.3 [14.4] 34.7 [10.2] 6.0	48.2 [14.1] 32.7 [9.6] 6.0	47.6 [14.0] 43.4 [12.7] 6.1	45.9 [13.5] 39.6 [11.6] 6.0	44.9 [13.2] 37.3 [10.9] 5.9
E °F [°C]	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	52.0 [15.2] 30.8 [9.0] 6.3	50.2 [14.7] 28.1 [8.2] 6.2	49.0 [14.4] 26.5 [7.8] 6.2	48.4 [14.2] 36.0 [10.6] 6.4	46.6 [13.7] 32.9 [9.6] 6.3	45.6 [13.4] 31.0 [9.1] 6.2	44.8 [13.1] 41.4 [12.1] 6.3	43.2 [12.7] 37.8 [11.1] 6.2	42.2 [12.4] 35.6 [10.4] 6.2
[0]	125°F [51.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	49.1 [14.4] 28.6 [8.4] 6.6	47.3 [13.9] 26.1 [7.6] 6.5	46.3 [13.6] 24.6 [7.2] 6.4	45.4 [13.3] 33.9 [9.9] 6.6	43.8 [12.8] 30.9 [9.1] 6.5	42.8 [12.5] 29.2 [8.6] 6.4	41.9 [12.3] 39.3 [11.5] 6.6	40.4 [11.8] 35.8 [10.5] 6.5	39.5 [11.6] 33.8 [9.9] 6.4
DR —	-Depressio	n ratio	Total —Total c	apacity x 1000 I	Btu/h	NOTES: ① W	/hen the entering	g air dry bulb is o	other than 80°F	[27°C], adjust th	e sensible

Sens —Sensible capacity x 1000 Btu/h Power —kW input

NULES: (1) When the entering air dry bulb is other than 80°F [27] (), adjust the sense capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

dbE —Entering air dry bulb wbE—Entering air wet bulb

					- ENTERING II	NDOOR AIR @	80°F [26.7°C] (dbE ①			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	2525 [1192]	2400 [1133]	1825 [861]	2525 [1192]	2400 [1133]	1825 [861]	2525 [1192]	2400 [1133]	1825 [861]
		DR ①	.05	.09	.12	.05	.09	.12	.05	.09	.12
0	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	79.7 [23.4] 44.6 [13.1] 4.8	78.9 [23.1] 43.5 [12.7] 4.8	75.5 [22.1] 38.6 [11.3] 4.7	73.8 [21.6] 49.7 [14.6] 4.7	73.1 [21.4] 48.5 [14.2] 4.7	70.0 [20.5] 43.1 [12.6] 4.6	68.0 [19.9] 54.9 [16.1] 4.9	67.4 [19.8] 53.6 [15.7] 4.8	64.4 [18.9] 47.6 [14.0] 4.7
U T D	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	78.2 [22.9] 44.4 [13.0] 5.2	77.4 [22.7] 43.4 [12.7] 5.1	74.1 [21.7] 38.5 [11.3] 5	72.3 [21.2] 49.6 [14.5] 5.1	71.6 [21.0] 48.4 [14.2] 5.0	68.5 [20.1] 43.0 [12.6] 4.9	66.5 [19.5] 54.7 [16.0] 5.2	65.9 [19.3] 53.4 [15.7] 5.2	63.0 [18.5] 47.5 [13.9] 5.1
0 0 R	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	76.6 [22.5] 44.3 [13.0] 5.5	75.9 [22.2] 43.2 [12.7] 5.5	72.6 [21.3] 38.4 [11.3] 5.4	70.8 [20.8] 49.4 [14.5] 5.4	70.1 [20.5] 48.3 [14.2] 5.4	67.1 [19.7] 42.9 [12.6] 5.2	65.0 [19.1] 54.6 [16.0] 5.5	64.4 [18.9] 53.3 [15.6] 5.5	61.6 [18.1] 47.4 [13.9] 5.4
D R Y	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	75.1 [22.0] 44.2 [13.0] 5.8	74.4 [21.8] 43.1 [12.6] 5.8	71.2 [20.9] 38.3 [11.2] 5.7	69.3 [20.3] 49.3 [14.4] 5.7	68.6 [20.1] 48.1 [14.1] 5.7	65.7 [19.3] 42.8 [12.5] 5.6	63.5 [18.6] 54.5 [16.0] 5.8	62.9 [18.4] 53.2 [15.6] 5.8	60.1 [17.6] 47.2 [13.8] 5.7
r B U	95°F [35°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	73.6 [21.6] 44.0 [12.9] 6.1	72.9 [21.4] 43.0 [12.6] 6.1	69.8 [20.5] 38.2 [11.2] 6.0	67.8 [19.9] 49.2 [14.4] 6.0	67.1 [19.7] 48.0 [14.1] 6.0	64.2 [18.8] 42.6 [12.5] 5.9	61.9 [18.1] 54.3 [15.9] 6.2	61.4 [18.0] 53.0 [15.5] 6.1	58.7 [17.2] 47.1 [13.8] 6.0
L B	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	72.1 [21.1] 43.9 [12.9] 6.5	71.4 [20.9] 42.8 [12.5] 6.4	68.3 [20.0] 38.0 [11.1] 6.3	66.3 [19.4] 49.0 [14.4] 6.4	65.6 [19.2] 47.9 [14.0] 6.3	62.8 [18.4] 42.5 [12.5] 6.2	60.4 [17.7] 54.2 [15.9] 6.5	59.9 [17.6] 52.9 [15.5] 6.4	57.3 [16.8] 47.0 [13.8] 6.3
T E M P	105°F [40.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	70.6 [20.7] 43.7 [12.8] 6.8	69.9 [20.5] 42.7 [12.5] 6.7	66.9 [19.6] 37.9 [11.1] 6.6	64.8 [19.0] 48.9 [14.3] 6.7	64.1 [18.8] 47.7 [14.0] 6.6	61.4 [18.0] 42.4 [12.4] 6.5	58.9 [17.3] 54.0 [15.8] 6.8	58.4 [17.1] 52.8 [15.5] 6.8	55.8 [16.4] 46.9 [13.7] 6.6
F E R A	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	69.1 [20.3] 43.6 [12.8] 7.1	68.4 [20.0] 42.6 [12.5] 7.1	65.4 [19.2] 37.8 [11.1] 6.9	63.2 [18.5] 48.7 [14.3] 7.0	62.6 [18.3] 47.6 [14.0] 7.0	59.9 [17.6] 42.3 [12.4] 6.8	57.4 [16.8] 53.9 [15.8] 7.1	56.9 [16.7] 52.6 [15.4] 7.1	54.4 [15.9] 46.7 [13.7] 6.9
A T U R E °F [°℃]	115°F [46.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	67.6 [19.8] 43.4 [12.7] 7.4	66.9 [19.6] 42.4 [12.4] 7.4	64.0 [18.8] 37.7 [11.0] 7.2	61.7 [18.1] 48.6 [14.2] 7.3	61.1 [17.9] 47.5 [13.9] 7.3	58.5 [17.1] 42.1 [12.3] 7.1	55.9 [16.4] 53.8 [15.8] 7.4	55.4 [16.2] 52.5 [15.4] 7.4	53 [15.5] 46.6 [13.7] 7.2
	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	66.0 [19.3] 43.3 [12.7] 7.7	65.4 [19.2] 42.3 [12.4] 7.7	62.6 [18.3] 37.6 [11.0] 7.5	60.2 [17.6] 48.5 [14.2] 7.6	59.6 [17.5] 47.3 [13.9] 7.6	57.0 [16.7] 42.0 [12.3] 7.4	54.4 [15.9] 53.6 [15.7] 7.8	53.9 [15.8] 52.4 [15.4] 7.7	51.5 [15.1] 46.5 [13.6] 7.6
	125°F [51.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	64.5 [18.9] 43.2 [12.7] 8.1	63.9 [18.7] 42.1 [12.3] 8.0	61.1 [17.9] 37.4 [11.0] 7.9	58.7 [17.2] 48.3 [14.2] 8.0	58.1 [17.0] 47.2 [13.8] 7.9	55.6 [16.3] 41.9 [12.3] 7.8	52.9 [15.5] 52.9 [15.5] 8.1	52.4 [15.4] 52.2 [15.3] 8.0	50.1 [14.7] 46.4 [13.6] 7.9

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 Btu/h Sens —Sensible capacity x 1000 Btu/h Power —kW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

				RGECYC036	- ENTERING II	NDOOR AIR @	80°F [26.7°C]	dbE ①			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	1425 [673]	1050 [496]	1100 [519]	1425 [673]	1050 [496]	1100 [519]	1425 [673]	1050 [496]	1100 [519]
	0	R ①	.05	.09	.12	.05	.09	.12	.05	.09	.12
0	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	46.7 [13.7] 28.1 [8.2] 2.3	43.8 [12.8] 24.1 [7.1] 2.3	44.2 [13.0] 24.6 [7.2] 2.3	43.6 [12.8] 32.1 [9.4] 2.3	41.0 [12.0] 27.5 [8.1] 2.3	41.3 [12.1] 28.1 [8.2] 2.3	40.4 [11.8] 35.9 [10.5] 2.3	37.9 [11.1] 30.8 [9.0] 2.2	38.3 [11.2] 31.5 [9.2] 2.2
U T D	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	46.1 [13.5] 28.0 [8.2] 2.5	43.3 [12.7] 24.0 [7.0] 2.4	43.7 [12.8] 24.6 [7.2] 2.4	43.1 [12.6] 32.0 [9.4] 2.5	40.5 [11.9] 27.4 [8.0] 2.4	40.8 [12.0] 28.1 [8.2] 2.4	39.9 [11.7] 35.8 [10.5] 2.4	37.4 [11.0] 30.7 [9.0] 2.3	37.8 [11.1] 31.4 [9.2] 2.3
0 0 R	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	45.4 [13.3] 27.7 [8.1] 2.6	42.6 [12.5] 23.8 [7.0] 2.5	43.0 [12.6] 24.3 [7.1] 2.5	42.4 [12.4] 31.7 [9.3] 2.6	39.8 [11.7] 27.2 [8.0] 2.5	40.1 [11.8] 27.8 [8.1] 2.5	39.1 [11.5] 35.5 [10.4] 2.5	36.8 [10.8] 30.4 [8.9] 2.5	37.1 [10.9] 31.1 [9.1] 2.5
D R Y	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	44.5 [13.0] 27.2 [8.0] 2.7	41.8 [12.3] 23.3 [6.8] 2.7	42.1 [12.3] 23.9 [7.0] 2.7	41.4 [12.1] 31.2 [9.1] 2.7	38.9 [11.4] 26.8 [7.9] 2.7	39.2 [11.5] 27.4 [8.0] 2.7	38.2 [11.2] 35.0 [10.3] 2.7	35.9 [10.5] 30.0 [8.8] 2.6	36.2 [10.6] 30.7 [9.0] 2.6
BU	95°F [35°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	43.4 [12.7] 26.5 [7.8] 2.9	40.7 [11.9] 22.7 [6.7] 2.8	41.1 [12.0] 23.2 [6.8] 2.8	40.3 [11.8] 30.5 [8.9] 2.9	37.9 [11.1] 26.1 [7.6] 2.8	38.2 [11.2] 26.7 [7.8] 2.8	37.1 [10.9] 34.3 [10.1] 2.8	34.8 [10.2] 29.4 [8.6] 2.7	35.1 [10.3] 30.1 [8.8] 2.7
L B	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	42.1 [12.3] 25.6 [7.5] 3.0	39.5 [11.6] 21.9 [6.4] 2.9	39.8 [11.7] 22.4 [6.6] 2.9	39.0 [11.4] 29.6 [8.7] 3.0	36.6 [10.7] 25.3 [7.4] 2.9	36.9 [10.8] 25.9 [7.6] 2.9	35.8 [10.5] 33.4 [9.8] 2.9	33.6 [9.8] 28.6 [8.4] 2.9	33.9 [9.9] 29.2 [8.6] 2.9
T E M P	105°F [40.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	40.5 [11.9] 24.5 [7.2] 3.1	38.1 [11.2] 21.0 [6.2] 3.0	38.4 [11.3] 21.4 [6.3] 3.1	37.5 [11.0] 28.4 [8.3] 3.1	35.2 [10.3] 24.4 [7.2] 3.0	35.5 [10.4] 24.9 [7.3] 3.1	34.3 [10.1] 32.2 [9.4] 3.1	32.2 [9.4] 27.6 [8.1] 3.0	32.5 [9.5] 28.2 [8.3] 3.0
E R A	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	38.9 [11.4] 23.1 [6.8] 3.3	36.5 [10.7] 19.8 [5.8] 3.2	36.8 [10.8] 20.2 [5.9] 3.2	35.8 [10.5] 27.1 [7.9] 3.3	33.6 [9.8] 23.2 [6.8] 3.2	33.9 [9.9] 23.7 [6.9] 3.2	32.6 [9.6] 30.9 [9.1] 3.2	30.6 [9.0] 26.5 [7.8] 3.1	30.9 [9.1] 27.1 [7.9] 3.1
T U R	115°F [46.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	37.0 [10.8] 21.5 [6.3] 3.4	34.7 [10.2] 18.5 [5.4] 3.3	35.0 [10.3] 18.9 [5.5] 3.3	33.9 [9.9] 25.5 [7.5] 3.4	31.9 [9.3] 21.9 [6.4] 3.3	32.1 [9.4] 22.4 [6.6] 3.3	30.7 [9.0] 29.3 [8.6] 3.3	28.8 [8.4] 25.1 [7.4] 3.2	29.1 [8.5] 25.7 [7.5] 3.3
E °F [°C]	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	34.9 [10.2] 19.8 [5.8] 3.5	32.8 [9.6] 17.0 [5.0] 3.4	33.0 [9.7] 17.3 [5.1] 3.4	31.8 [9.3] 23.8 [7.0] 3.5	29.9 [8.8] 20.4 [6.0] 3.4	30.2 [8.9] 20.8 [6.1] 3.4	28.6 [8.4] 27.6 [8.1] 3.5	26.9 [7.9] 23.6 [6.9] 3.4	27.1 [7.9] 24.2 [7.1] 3.4
[0]	125°F [51.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	32.6 [9.6] 17.8 [5.2] 3.7	30.6 [9.0] 15.3 [4.5] 3.6	30.9 [9.1] 15.6 [4.6] 3.6	29.6 [8.7] 21.8 [6.4] 3.7	27.8 [8.1] 18.7 [5.5] 3.6	28.0 [8.2] 19.1 [5.6] 3.6	26.4 [7.7] 25.6 [7.5] 3.6	24.7 [7.2] 21.9 [6.4] 3.5	25.0 [7.3] 22.4 [6.6] 3.5
DR —	-Depressio	n ratio	Total —Total c	apacity x 1000 E	3tu/h	NOTES: ① W	/hen the entering	g air dry bulb is o	other than 80°F	[27°C], adjust th	e sensible

Sens —Sensible capacity x 1000 Btu/h Power —kW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

dbE —Entering air dry bulb wbE—Entering air wet bulb

					- ENTERING II	NDOOR AIR @		dbE 1			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	1875 [885]	1450 [684]	1450 [684]	1875 [885]	1450 [684]	1450 [684]	1875 [885]	1450 [684]	1450 [684]
		DR ①	.05	.09	.12	.05	.09	.12	.05	.09	.12
0	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	63.3 [18.6] 36.8 [10.8] 3.2	60.1 [17.6] 32.4 [9.5] 3.1	60.1 [17.6] 32.4 [9.5] 3.1	58.9 [17.3] 42.7 [12.5] 3.2	56.0 [16.4] 37.5 [11.0] 3.1	56.0 [16.4] 37.5 [11.0] 3.1	55.3 [16.2] 49.4 [14.5] 3.2	52.5 [15.4] 43.5 [12.7] 3.1	52.5 [15.4] 43.5 [12.7] 3.1
U T D	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	61.8 [18.1] 35.9 [10.5] 3.4	58.6 [17.2] 31.6 [9.3] 3.3	58.6 [17.2] 31.6 [9.3] 3.3	57.4 [16.8] 41.8 [12.3] 3.4	54.5 [16.0] 36.8 [10.8] 3.3	54.5 [16.0] 36.8 [10.8] 3.3	53.8 [15.8] 48.5 [14.2] 3.3	51.1 [15.0] 42.7 [12.5] 3.2	51.1 [15.0] 42.7 [12.5] 3.2
0 0 R	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	60.2 [17.6] 35.0 [10.3] 3.5	57.2 [16.8] 30.8 [9.0] 3.5	57.2 [16.8] 30.8 [9.0] 3.5	55.8 [16.4] 40.9 [12.0] 3.5	53.0 [15.5] 36.0 [10.6] 3.4	53.0 [15.5] 36.0 [10.6] 3.4	52.2 [15.3] 47.7 [14.0] 3.5	49.6 [14.5] 41.9 [12.3] 3.4	49.6 [14.5] 41.9 [12.3] 3.4
D R Y	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	58.6 [17.2] 34.1 [10.0] 3.7	55.7 [16.3] 30.0 [8.8] 3.6	55.7 [16.3] 30.0 [8.8] 3.6	54.2 [15.9] 40.0 [11.7] 3.7	51.5 [15.1] 35.2 [10.3] 3.6	51.5 [15.1] 35.2 [10.3] 3.6	50.6 [14.8] 46.8 [13.7] 3.7	48.1 [14.1] 41.1 [12.0] 3.6	48.1 [14.1] 41.1 [12.0] 3.6
r B U	95°F [35°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	57.0 [16.7] 33.2 [9.7] 3.9	54.1 [15.9] 29.2 [8.6] 3.8	54.1 [15.9] 29.2 [8.6] 3.8	52.6 [15.4] 39.1 [11.5] 3.9	50.0 [14.7] 34.4 [10.1] 3.8	50.0 [14.7] 34.4 [10.1] 3.8	49.0 [14.4] 45.8 [13.4] 3.9	46.5 [13.6] 40.3 [11.8] 3.8	46.5 [13.6] 40.3 [11.8] 3.8
L B	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	55.4 [16.2] 32.3 [9.5] 4.1	52.6 [15.4] 28.4 [8.3] 4.0	52.6 [15.4] 28.4 [8.3] 4.0	51.0 [14.9] 38.2 [11.2] 4.1	48.4 [14.2] 33.6 [9.8] 4.0	48.4 [14.2] 33.6 [9.8] 4.0	47.4 [13.9] 44.9 [13.2] 4.1	45.0 [13.2] 39.5 [11.6] 4.0	45.0 [13.2] 39.5 [11.6] 4.0
T E M P	105°F [40.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	53.8 [15.8] 31.3 [9.2] 4.4	51 [14.9] 27.5 [8.1] 4.2	51.0 [14.9] 27.5 [8.1] 4.2	49.4 [14.5] 37.2 [10.9] 4.3	46.9 [13.7] 32.7 [9.6] 4.2	46.9 [13.7] 32.7 [9.6] 4.2	45.8 [13.4] 43.9 [12.9] 4.3	43.4 [12.7] 38.7 [11.3] 4.2	43.4 [12.7] 38.7 [11.3] 4.2
F E R A	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	52.1 [15.3] 30.3 [8.9] 4.6	49.5 [14.5] 26.7 [7.8] 4.5	49.5 [14.5] 26.7 [7.8] 4.5	47.7 [14.0] 36.2 [10.6] 4.6	45.3 [13.3] 31.9 [9.3] 4.4	45.3 [13.3] 31.9 [9.3] 4.4	44.1 [12.9] 43.0 [12.6] 4.5	41.9 [12.3] 37.8 [11.1] 4.4	41.9 [12.3] 37.8 [11.1] 4.4
T U R	115°F [46.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	50.4 [14.8] 29.3 [8.6] 4.8	47.9 [14.0] 25.8 [7.6] 4.7	47.9 [14.0] 25.8 [7.6] 4.7	46.0 [13.5] 35.2 [10.3] 4.8	43.7 [12.8] 31.0 [9.1] 4.7	43.7 [12.8] 31.0 [9.1] 4.7	42.4 [12.4] 42.0 [12.3] 4.8	40.3 [11.8] 36.9 [10.8] 4.7	40.3 [11.8] 36.9 [10.8] 4.7
E °F	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	48.7 [14.3] 28.3 [8.3] 5.1	46.3 [13.6] 24.9 [7.3] 5.0	46.3 [13.6] 24.9 [7.3] 5.0	44.3 [13.0] 34.2 [10.0] 5.1	42.1 [12.3] 30.1 [8.8] 4.9	42.1 [12.3] 30.1 [8.8] 4.9	40.7 [11.9] 40.7 [11.9] 5.1	38.7 [11.3] 36.0 [10.6] 4.9	38.7 [11.3] 36.0 [10.6] 4.9
[°C]	125°F [51.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	47.0 [13.8] 27.3 [8.0] 5.4	44.7 [13.1] 24.0 [7.0] 5.2	44.7 [13.1] 24.0 [7.0] 5.2	42.6 [12.5] 33.2 [9.7] 5.4	40.5 [11.9] 29.2 [8.6] 5.2	40.5 [11.9] 29.2 [8.6] 5.2	39.0 [11.4] 39.0 [11.4] 5.3	37.1 [10.9] 35.1 [10.3] 5.2	37.1 [10.9] 35.1 [10.3] 5.2

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 Btu/h Sens —Sensible capacity x 1000 Btu/h Power —kW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

				RGECYC060	- ENTERING II	NDOOR AIR @ 3	80°F [26.7°C]	dbE ①			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	2225 [1050]	1850 [873]	1725 [814]	2225 [1050]	1850 [873]	1725 [814]	2225 [1050]	1850 [873]	1725 [814]
	0	R 1	.05	.09	.12	.05	.09	.12	.05	.09	.12
0	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	76.1 [22.3] 43.5 [12.7] 4.2	73.4 [21.5] 39.8 [11.7] 4.2	72.5 [21.2] 38.5 [11.3] 4.1	68.8 [20.2] 50.0 [14.7] 4.2	66.3 [19.4] 45.7 [13.4] 4.2	65.5 [19.2] 44.3 [13.0] 4.1	63.7 [18.7] 56.3 [16.5] 4.2	61.5 [18.0] 51.5 [15.1] 4.1	60.7 [17.8] 49.8 [14.6] 4.1
U U T D	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	74.4 [21.8] 42.6 [12.5] 4.4	71.7 [21.0] 38.9 [11.4] 4.4	70.9 [20.8] 37.7 [11.0] 4.3	67.0 [19.6] 49.1 [14.4] 4.4	64.6 [18.9] 44.9 [13.2] 4.4	63.9 [18.7] 43.5 [12.7] 4.3	62.0 [18.2] 55.4 [16.2] 4.4	59.8 [17.5] 50.6 [14.8] 4.3	59.0 [17.3] 49.0 [14.4] 4.3
0 0 R	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	72.6 [21.3] 41.7 [12.2] 4.7	70.0 [20.5] 38.1 [11.2] 4.6	69.1 [20.3] 36.9 [10.8] 4.6	65.2 [19.1] 48.2 [14.1] 4.7	62.9 [18.4] 44.0 [12.9] 4.6	62.1 [18.2] 42.6 [12.5] 4.6	60.1 [17.6] 54.5 [16.0] 4.6	58.0 [17.0] 49.8 [14.6] 4.5	57.3 [16.8] 48.2 [14.1] 4.5
D R Y	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	70.7 [20.7] 40.7 [11.9] 4.9	68.2 [20.0] 37.2 [10.9] 4.8	67.3 [19.7] 36.0 [10.6] 4.8	63.3 [18.6] 47.2 [13.8] 4.9	61.1 [17.9] 43.1 [12.6] 4.8	60.3 [17.7] 41.8 [12.3] 4.8	58.3 [17.1] 53.5 [15.7] 4.8	56.2 [16.5] 48.9 [14.3] 4.7	55.5 [16.3] 47.3 [13.9] 4.7
BU	95°F [35°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	68.7 [20.1] 39.6 [11.6] 5.1	66.3 [19.4] 36.2 [10.6] 5.0	65.5 [19.2] 35.1 [10.3] 5.0	61.4 [18.0] 46.2 [13.5] 5.1	59.2 [17.4] 42.2 [12.4] 5.0	58.5 [17.1] 40.8 [12.0] 5.0	56.3 [16.5] 52.4 [15.4] 5.1	54.3 [15.9] 47.9 [14.0] 5.0	53.6 [15.7] 46.4 [13.6] 4.9
L B	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	66.7 [19.5] 38.5 [11.3] 5.3	64.4 [18.9] 35.2 [10.3] 5.2	63.6 [18.6] 34.1 [10.0] 5.2	59.4 [17.4] 45.1 [13.2] 5.3	57.3 [16.8] 41.2 [12.1] 5.2	56.6 [16.6] 39.9 [11.7] 5.2	54.3 [15.9] 51.4 [15.1] 5.3	52.4 [15.4] 46.9 [13.7] 5.2	51.7 [15.2] 45.4 [13.3] 5.1
T E M P	105°F [40.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	64.7 [19.0] 37.4 [11.0] 5.5	62.4 [18.3] 34.2 [10.0] 5.4	61.6 [18.1] 33.1 [9.7] 5.4	57.3 [16.8] 43.9 [12.9] 5.5	55.3 [16.2] 40.1 [11.8] 5.4	54.6 [16.0] 38.9 [11.4] 5.4	52.2 [15.3] 50.2 [14.7] 5.5	50.4 [14.8] 45.9 [13.5] 5.4	49.8 [14.6] 44.4 [13.0] 5.4
E R A	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	62.5 [18.3] 36.2 [10.6] 5.8	60.3 [17.7] 33.1 [9.7] 5.7	59.6 [17.5] 32.0 [9.4] 5.6	55.2 [16.2] 42.7 [12.5] 5.7	53.2 [15.6] 39.1 [11.5] 5.6	52.6 [15.4] 37.8 [11.1] 5.6	50.1 [14.7] 49.0 [14.4] 5.7	48.3 [14.2] 44.8 [13.1] 5.6	47.7 [14.0] 43.4 [12.7] 5.6
T U R	115°F [46.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	60.3 [17.7] 35.0 [10.3] 6.0	58.2 [17.1] 32.0 [9.4] 5.9	57.5 [16.9] 31.0 [9.1] 5.8	53.0 [15.5] 41.5 [12.2] 6.0	51.1 [15.0] 37.9 [11.1] 5.9	50.5 [14.8] 36.7 [10.8] 5.8	47.9 [14.0] 47.8 [14.0] 5.9	46.2 [13.5] 43.7 [12.8] 5.8	45.7 [13.4] 42.3 [12.4] 5.8
E °F [°C]	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	58.1 [17.0] 33.7 [9.9] 6.2	56.0 [16.4] 30.8 [9.0] 6.1	55.3 [16.2] 29.8 [8.7] 6.0	50.7 [14.9] 40.2 [11.8] 6.2	48.9 [14.3] 36.8 [10.8] 6.1	48.3 [14.2] 35.6 [10.4] 6.0	45.7 [13.4] 45.7 [13.4] 6.1	44.0 [12.9] 42.5 [12.5] 6.0	43.5 [12.7] 41.2 [12.1] 6.0
	125°F [51.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	55.8 [16.4] 32.4 [9.5] 6.4	53.8 [15.8] 29.6 [8.7] 6.3	53.1 [15.6] 28.6 [8.4] 6.3	48.4 [14.2] 38.9 [11.4] 6.4	46.7 [13.7] 35.5 [10.4] 6.3	46.1 [13.5] 34.4 [10.1] 6.3	43.4 [12.7] 43.4 [12.7] 6.4	41.8 [12.3] 41.3 [12.1] 6.2	41.3 [12.1] 40.0 [11.7] 6.2
DR —	-Depressio	n ratio	Total —Total c	apacity x 1000 E	3tu/h	NOTES: ① W	/hen the entering	g air dry bulb is o	other than 80°F	[27°C], adjust th	e sensible

dbE —Entering air dry bulb wbE—Entering air wet bulb

Sens —Sensible capacity x 1000 Btu/h Power —kW input

NULES: (1) When the entering air dry bulb is other than 80°F [27] (), adjust the sense capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

						-					
				ENTI	ERING INDOOR	AIR @75°F [2	3.9°C] dbE 🕦				
		wbE	65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]		
	CF	M [L/s]	1350 [637]	1168 [551]	1050 [496]	1350 [637]	1168 [551]	1050 [496]	1350 [637]	1168 [551]	1050 [496]
OUTDOOR DRY B	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	18.7 [5.5] 2.8 [0.8] 2.0	18.1 [5.3] 2.6 [0.8] 2.0	17.8 [5.2] 2.5 [0.7] 2.0	18.4 [5.4] 4.7 [1.4] 2.0	17.9 [5.3] 4.4 [1.3] 2.0	17.6 [5.2] 4.2 [1.2] 2.0	17.3 [5.1] 5.9 [1.7] 2.1	16.8 [4.9] 5.5 [1.6] 2.0	16.5 [4.8] 5.3 [1.5] 2.0
	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	16.9 [5.0] 1.8 [0.5] 2.1	16.5 [4.8] 1.7 [0.5] 2.0	16.2 [4.7] 1.6 [0.5] 2.0	16.7 [4.9] 3.7 [1.1] 2.1	16.3 [4.8] 3.5 [1.0] 2.0	16.0 [4.7] 3.3 [1.0] 2.0	15.6 [4.6] 4.9 [1.4] 2.1	15.2 [4.4] 4.6 [1.3] 2.1	14.9 [4.4] 4.4 [1.3] 2.0
	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	15.0 [4.4] 0.4 [0.1] 2.2	14.6 [4.3] 0.4 [0.1] 2.1	14.3 [4.2] 0.4 [0.1] 2.1	14.8 [4.3] 2.4 [0.7] 2.2	14.4 [4.2] 2.2 [0.7] 2.1	14.1 [4.1] 2.1 [0.6] 2.1	13.7 [4.0] 3.6 [1.1] 2.2	13.3 [3.9] 3.3 [1.0] 2.2	13.0 [3.8] 3.2 [0.9] 2.1
L B T	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	12.8 [3.8] -1.2 [-0.4] 2.3	12.5 [3.7] -1.2 [-0.3] 2.3	12.3 [3.6] -1.1 [-0.3] 2.3	12.6 [3.7] 0.7 [0.2] 2.3	12.3 [3.6] 0.7 [0.2] 2.3	12.0 [3.5] 0.6 [0.2] 2.3	11.5 [3.4] 1.9 [0.6] 2.3	11.2 [3.3] 1.8 [0.5] 2.3	11.0 [3.2] 1.7 [0.5] 2.3
-ERATORE °F(°C)	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	10.4 [3.1] -3.2 [-0.9] 2.5	10.1 [3.0] -3.0 [-0.9] 2.5	10.0 [2.9] -2.9 [-0.8] 2.5	10.2 [3.0] -1.3 [-0.4] 2.5	9.9 [2.9] -1.2 [-0.4] 2.5	9.8 [2.9] -1.1 [-0.3] 2.5	9.1 [2.7] -0.1 [0.0] 2.5	8.8 [2.6] -0.1 [0.0] 2.5	8.7 [2.5] -0.1 [0.0] 2.5
	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	7.8 [2.3] -5.6 [-1.6] 2.8	7.6 [2.2] -5.2 [-1.5] 2.7	7.4 [2.2] -5.0 [-1.5] 2.7	7.6 [2.2] -3.6 [-1.1] 2.8	7.4 [2.2] -3.4 [-1.0] 2.7	7.2 [2.1] -3.2 [-0.9] 2.7	6.5 [1.9] -2.4 [-0.7] 2.8	6.3 [1.8] -2.3 [-0.7] 2.8	6.2 [1.8] -2.1 [-0.6] 2.7
	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	4.9 [1.4] -8.2 [-2.4] 3.1	4.8 [1.4] -7.7 [-2.3] 3.1	4.7 [1.4] -7.3 [-2.1] 3.0	4.7 [1.4] -6.3 [-1.8] 3.1	4.6 [1.3] -5.9 [-1.7] 3.0	4.5 [1.3] -5.6 [-1.6] 3.0	3.6 [1.1] -5.1 [-1.5] 3.1	3.5 [1.0] -4.7 [-1.4] 3.1	3.4 [1.0] -4.5 [-1.3] 3.0

GROSS SYSTEMS PERFORMANCE DATA (HIGH HUMIDIDRY MODE) – RGECYB036

GROSS SYSTEMS PERFORMANCE DATA (HIGH HUMIDIDRY MODE)-RGECYB048

	ENTERING INDOOR AIR @ 75°F [23.9°C] dbE ①												
		wbE	65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]				
	CFI	VI [L/s]	1800 [850]	1519 [717]	1400 [661]	1800 [850]	1519 [717]	1400 [661]	1800 [850]	1519 [717]	1400 [661]		
OUT DOOR DRY B	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	25.5 [7.5] 2.6 [0.8] 2.5	24.7 [7.2] 2.4 [0.7] 2.4	24.3 [7.1] 2.3 [0.7] 2.4	24.3 [7.1] 5.2 [1.5] 2.5	23.5 [6.9] 4.8 [1.4] 2.5	23.2 [6.8] 4.6 [1.4] 2.5	22.6 [6.6] 6.7 [2.0] 2.4	21.8 [6.4] 6.1 [1.8] 2.4	21.5 [6.3] 5.9 [1.7] 2.4		
	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	24.1 [7.1] 1.9 [0.6] 2.6	23.3 [6.8] 1.8 [0.5] 2.5	23.0 [6.7] 1.7 [0.5] 2.5	22.9 [6.7] 4.5 [1.3] 2.7	22.2 [6.5] 4.2 [1.2] 2.6	21.8 [6.4] 4.0 [1.2] 2.6	21.2 [6.2] 6.0 [1.8] 2.6	20.5 [6.0] 5.5 [1.6] 2.5	20.2 [5.9] 5.3 [1.6] 2.5		
		Total kBtu/h [kW] Sens kBtu/h [kW] Power	22.1 [6.5] 0.4 [0.1] 2.8	21.4 [6.3] 0.4 [0.1] 2.7	21.1 [6.2] 0.4 [0.1] 2.7	20.9 [6.1] 3.0 [0.9] 2.8	20.2 [5.9] 2.8 [0.8] 2.8	20.0 [5.8] 2.7 [0.8] 2.8	19.2 [5.6] 4.5 [1.3] 2.7	18.6 [5.4] 4.1 [1.2] 2.7	18.3 [5.4] 4.0 [1.2] 2.7		
U L B T	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	19.5 [5.7] -1.9 [-0.5] 3.0	18.9 [5.5] -1.7 [-0.5] 2.9	18.6 [5.5] -1.7 [-0.5] 2.9	18.3 [5.4] 0.7 [0.2] 3.0	17.7 [5.2] 0.7 [0.2] 3.0	17.5 [5.1] 0.6 [0.2] 3.0	16.6 [4.9] 2.2 [0.6] 3.0	16.1 [4.7] 2.0 [0.6] 2.9	15.8 [4.6] 1.9 [0.6] 2.9		
Ш М Р Ш р	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	16.4 [4.8] -5.0 [-1.5] 3.3	15.8 [4.6] -4.6 [-1.4] 3.2	15.6 [4.6] -4.4 [-1.3] 3.2	15.2 [4.4] -2.4 [-0.7] 3.3	14.7 [4.3] -2.2 [-0.7] 3.3	14.5 [4.2] -2.1 [-0.6] 3.3	13.4 [3.9] -0.9 [-0.3] 3.2	13.0 [3.8] -0.9 [-0.3] 3.2	12.8 [3.8] -0.8 [-0.2] 3.2		
RATURE [°] F°C	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	12.6 [3.7] -9.0 [-2.6] 3.6	12.2 [3.6] -8.3 [-2.4] 3.6	12.0 [3.5] -8.0 [-2.3] 3.5	11.4 [3.3] -6.4 [-1.9] 3.7	11.0 [3.2] -5.9 [-1.7] 3.6	10.9 [3.2] -5.6 [-1.7] 3.6	9.7 [2.8] -4.9 [-1.4] 3.6	9.4 [2.7] -4.5 [-1.3] 3.5	9.2 [2.7] -4.3 [-1.3] 3.5		
	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	8.2 [2.4] -13.7 [-4.0] 4.0	8.0 [2.3] -12.7 [-3.7] 4.0	7.9 [2.3] -12.2 [-3.6] 3.9	7.1 [2.1] -11.1 [-3.3] 4.1	6.8 [2.0] -10.3 [-3.0] 4.0	6.7 [2.0] -9.9 [-2.9] 4.0	5.3 [1.6] -9.7 [-2.8] 4.0	5.2 [1.5] -8.9 [-2.6] 3.9	5.1 [1.5] -8.6 [-2.5] 3.9		
	-Depressio		Total —Total c			NOTES: ① V	/hen the entering	g air dry bulb is o					

DR -Depression ratio dbE —Entering air dry bulb

NOTES: ① When the entering air dry bulb is other than 75°F [23.9°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

Sens —Sensible capacity x 1000 Btu/h wbE—Entering air wet bulb

GROSS SYSTEMS PERFORMANCE DATA (HIGH HUMIDIDRY MODE)-RGECYB060

				ENTE	RING INDOOR	AIR @ 75°F [2	3.9°C] dbE ①				
		wbE	65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]		
	CF	M [L/s]	2250 [1062]	1825 [861]	1750 [826]	2250 [1062]	1825 [861]	1750 [826]	2250 [1062]	1825 [861]	1750 [826]
OUTDOOR DRY B	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	29.1 [8.5] 1.9 [0.5] 3.5	27.9 [8.2] 1.7 [0.5] 3.5	27.7 [8.1] 1.7 [0.5] 3.5	28.5 [8.3] 5.1 [1.5] 3.5	27.3 [8.0] 4.6 [1.3] 3.5	27.1 [7.9] 4.5 [1.3] 3.4	26.6 [7.8] 7.9 [2.3] 3.5	25.5 [7.5] 7.1 [2.1] 3.5	25.3 [7.4] 7.0 [2.1] 3.5
	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	27.5 [8.0] 0.6 [0.2] 3.6	26.3 [7.7] 0.6 [0.2] 3.6	26.2 [7.7] 0.6 [0.2] 3.6	26.8 [7.9] 3.8 [1.1] 3.6	25.7 [7.5] 3.4 [1.0] 3.6	25.5 [7.5] 3.4 [1.0] 3.5	24.9 [7.3] 6.7 [2.0] 3.6	23.9 [7.0] 6.0 [1.8] 3.6	23.7 [7.0] 5.9 [1.7] 3.6
	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	25.2 [7.4] -1.2 [-0.4] 3.8	24.2 [7.1] -1.1 [-0.3] 3.8	24.0 [7.0] -1.1 [-0.3] 3.7	24.5 [7.2] 2.0 [0.6] 3.8	23.5 [6.9] 1.8 [0.5] 3.7	23.4 [6.8] 1.8 [0.5] 3.7	22.6 [6.6] 4.8 [1.4] 3.8	21.7 [6.4] 4.4 [1.3] 3.8	21.6 [6.3] 4.3 [1.3] 3.7
L B T	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	22.3 [6.5] -3.6 [-1.1] 4.1	21.4 [6.3] -3.3 [-1.0] 4.0	21.2 [6.2] -3.2 [-0.9] 4.0	21.6 [6.3] -0.4 [-0.1] 4.1	20.8 [6.1] -0.4 [-0.1] 4.0	20.6 [6.0] -0.4 [-0.1] 4.0	19.7 [5.8] 2.4 [0.7] 4.1	18.9 [5.5] 2.2 [0.6] 4.0	18.8 [5.5] 2.1 [0.6] 4.0
E M P E R	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	18.7 [5.5] -6.7 [-1.9] 4.5	18.0 [5.3] -6.0 [-1.8] 4.4	17.8 [5.2] -5.9 [-1.7] 4.4	18.1 [5.3] -3.5 [-1.0] 4.5	17.4 [5.1] -3.1 [-0.9] 4.4	17.2 [5.1] -3.1 [-0.9] 4.4	16.2 [4.7] -0.6 [-0.2] 4.5	15.5 [4.6] -0.6 [-0.2] 4.4	15.4 [4.5] -0.5 [-0.2] 4.4
R A T U R E [°C]	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	14.6 [4.3] -10.3 [-3.0] 5.0	14.0 [4.1] -9.3 [-2.7] 4.9	13.9 [4.1] -9.1 [-2.7] 4.9	13.9 [4.1] -7.1 [-2.1] 5.0	13.4 [3.9] -6.4 [-1.9] 4.9	13.3 [3.9] -6.2 [-1.8] 4.8	12.0 [3.5] -4.2 [-1.2] 5.0	11.6 [3.4] -3.8 [-1.1] 4.9	11.5 [3.4] -3.7 [-1.1] 4.9
	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	9.8 [2.9] -14.5 [-4.2] 5.6	9.4 [2.8] -13.0 [-3.8] 5.4	9.3 [2.7] -12.8 [-3.7] 5.4	9.2 [2.7] -11.3 [-3.3] 5.5	8.8 [2.6] -10.2 [-3.0] 5.4	8.7 [2.6] -10.0 [-2.9] 5.4	7.3 [2.1] -8.4 [-2.5] 5.5	7.0 [2.0] -7.6 [-2.2] 5.4	6.9 [2.0] -7.4 [-2.2] 5.4

DR —Depression ratio dbE —Entering air dry bulb Total —Total capacity x 1000 Btu/h Sens —Sensible capacity x 1000 Btu/h **NOTES:** ① When the entering air dry bulb is other than 75°F [23.9°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

wbE—Entering air wet bulb

Power —kW input

											
				ENTI	ERING INDOOR	AIR @75°F [2	3.9°C] dbE ①				
		wbE	65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]		
	CF	M [L/s]	1710 [807]	1523 [719]	1330 [628]	1710 [807]	1523 [719]	1330 [628]	1710 [807]	1523 [719]	1330 [628]
OUTDOOR DRY B	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	35.8 [10.5] 12.8 [3.7] 2.3	35.0 [10.3] 12.1 [3.5] 2.2	34.2 [10.0] 11.4 [3.3] 2.2	32.5 [9.5] 12.6 [3.7] 2.3	31.8 [9.3] 12.0 [3.5] 2.3	31.0 [9.1] 11.3 [3.3] 2.3	31.4 [9.2] 16.2 [4.8] 2.2	30.7 [9.0] 15.3 [4.5] 2.2	30.0 [8.8] 14.4 [4.2] 2.2
	65°F [18.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	34.3 [10.1] 11.5 [3.4] 2.4	33.6 [9.8] 10.8 [3.2] 2.4	32.8 [9.6] 10.2 [3.0] 2.4	31.0 [9.1] 11.3 [3.3] 2.5	30.3 [8.9] 10.7 [3.1] 2.4	29.6 [8.7] 10.1 [3.0] 2.4	30.0 [8.8] 14.9 [4.4] 2.4	29.3 [8.6] 14.1 [4.1] 2.3	28.6 [8.4] 13.3 [3.9] 2.3
	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	32.6 [9.6] 10.0 [2.9] 2.6	31.9 [9.4] 9.4 [2.8] 2.6	31.2 [9.1] 8.9 [2.6] 2.5	29.4 [8.6] 9.8 [2.9] 2.6	28.7 [8.4] 9.3 [2.7] 2.6	28.1 [8.2] 8.8 [2.6] 2.6	28.3 [8.3] 13.4 [3.9] 2.5	27.7 [8.1] 12.7 [3.7] 2.5	27.0 [7.9] 11.9 [3.5] 2.5
U L B T	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	30.8 [9.0] 8.3 [2.4] 2.8	30.1 [8.8] 7.9 [2.3] 2.8	29.4 [8.6] 7.4 [2.2] 2.7	27.5 [8.1] 8.2 [2.4] 2.8	26.9 [7.9] 7.7 [2.3] 2.8	26.3 [7.7] 7.3 [2.1] 2.8	26.4 [7.7] 11.8 [3.4] 2.7	25.8 [7.6] 11.1 [3.3] 2.7	25.2 [7.4] 10.5 [3.1] 2.7
-EMPERATUR	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	28.7 [8.4] 6.5 [1.9] 3.0	28.1 [8.2] 6.1 [1.8] 2.9	27.4 [8.0] 5.8 [1.7] 2.9	25.4 [7.4] 6.4 [1.9] 3.0	24.8 [7.3] 6.0 [1.8] 3	24.3 [7.1] 5.7 [1.7] 2.9	24.3 [7.1] 10.0 [2.9] 2.9	23.8 [7.0] 9.4 [2.8] 2.9	23.3 [6.8] 8.9 [2.6] 2.9
	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	26.4 [7.7] 4.5 [1.3] 3.2	25.8 [7.6] 4.3 [1.3] 3.1	25.2 [7.4] 4.0 [1.2] 3.1	23.1 [6.8] 4.4 [1.3] 3.2	22.6 [6.6] 4.2 [1.2] 3.2	22.1 [6.5] 3.9 [1.1] 3.1	22.0 [6.5] 8.0 [2.3] 3.1	21.6 [6.3] 7.5 [2.2] 3.1	21.1 [6.2] 7.1 [2.1] 3.1
E °F [°C]	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	23.9 [7.0] 2.4 [0.7] 3.4	23.4 [6.9] 2.2 [0.7] 3.3	22.8 [6.7] 2.1 [0.6] 3.3	20.6 [6.0] 2.2 [0.7] 3.4	20.2 [5.9] 2.1 [0.6] 3.4	19.7 [5.8] 2.0 [0.6] 3.3	19.6 [5.7] 5.8 [1.7] 3.3	19.1 [5.6] 5.5 [1.6] 3.3	18.7 [5.5] 5.2 [1.5] 3.3

GROSS SYSTEMS PERFORMANCE DATA (LOW HUMIDIDRY MODE)-RGECYB072

GROSS SYSTEMS PERFORMANCE DATA (HIGH HUMIDIDRY MODE)-RGECYB072

	ENTERING INDOOR AIR @ 75°F [23.9°C] dbE ①												
	1	wbE	65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]				
	CFI	M [L/s]	2700 [1274]	2404 [1135]	2100 [991]	2700 [1274]	2404 [1135]	2100 [991]	2700 [1274]	2404 [1135]	2100 [991]		
OUTDOOR DRY B	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	44.6 [13.1] 13.3 [3.9] 3.8	43.6 [12.8] 12.6 [3.7] 3.7	42.6 [12.5] 11.8 [3.5] 3.7	43.0 [12.6] 15.5 [4.5] 3.7	42.1 [12.3] 14.7 [4.3] 3.7	41.1 [12.1] 13.8 [4.0] 3.6	39.3 [11.5] 20.2 [5.9] 3.7	38.4 [11.3] 19.1 [5.6] 3.6	37.5 [11.0] 18.0 [5.3] 3.6		
	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	42.4 [12.4] 11.3 [3.3] 3.9	41.5 [12.2] 10.7 [3.1] 3.9	40.6 [11.9] 10.1 [3.0] 3.8	40.9 [12.0] 13.6 [4.0] 3.9	40.0 [11.7] 12.8 [3.8] 3.8	39.1 [11.5] 12.1 [3.5] 3.8	37.1 [10.9] 18.3 [5.4] 3.8	36.3 [10.6] 17.3 [5.1] 3.8	35.5 [10.4] 16.3 [4.8] 3.7		
	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	38.9 [11.4] 8.2 [2.4] 4.2	38.1 [11.2] 7.8 [2.3] 4.1	37.2 [10.9] 7.3 [2.1] 4.1	37.4 [11.0] 10.4 [3.1] 4.1	36.6 [10.7] 9.9 [2.9] 4.1	35.7 [10.5] 9.3 [2.7] 4.1	33.6 [9.9] 15.1 [4.4] 4.1	32.9 [9.6] 14.3 [4.2] 4.0	32.1 [9.4] 13.5 [4.0] 4.0		
U L B T	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	34.1 [10.0] 3.9 [1.1] 4.5	33.3 [9.8] 3.7 [1.1] 4.5	32.6 [9.5] 3.5 [1.0] 4.4	32.5 [9.5] 6.1 [1.8] 4.5	31.8 [9.3] 5.8 [1.7] 4.5	31.1 [9.1] 5.5 [1.6] 4.4	28.8 [8.4] 10.8 [3.2] 4.4	28.1 [8.2] 10.2 [3.0] 4.4	27.5 [8.1] 9.6 [2.8] 4.4		
Ш М Р Ш С	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	27.8 [8.2] -1.6 [-0.5] 5.0	27.2 [8.0] -1.5 [-0.4] 4.9	26.6 [7.8] -1.4 [-0.4] 4.9	26.3 [7.7] 0.6 [0.2] 5.0	25.7 [7.5] 0.6 [0.2] 4.9	25.1 [7.4] 0.6 [0.2] 4.9	22.5 [6.6] 5.3 [1.6] 4.9	22.0 [6.5] 5.0 [1.5] 4.9	21.5 [6.3] 4.7 [1.4] 4.8		
R A T U R E	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	20.2 [5.9] -8.3 [-2.4] 5.6	19.8 [5.8] -7.8 [-2.3] 5.5	19.3 [5.7] -7.4 [-2.2] 5.4	18.7 [5.5] -6.1 [-1.8] 5.5	18.3 [5.4] -5.7 [-1.7] 5.5	17.9 [5.2] -5.4 [-1.6] 5.4	14.9 [4.4] -1.4 [-0.4] 5.5	14.6 [4.3] -1.3 [-0.4] 5.4	14.2 [4.2] -1.2 [-0.4] 5.3		
E °F [°C]	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	11.2 [3.3] -16.2 [-4.7] 6.2	11.0 [3.2] -15.3 [-4.5] 6.1	10.7 [3.1] -14.4 [-4.2] 6.1	9.7 [2.8] -14.0 [-4.1] 6.2	9.5 [2.8] -13.2 [-3.9] 6.1	9.3 [2.7] -12.4 [-3.6] 6.0	5.9 [1.7] -9.3 [-2.7] 6.1	5.8 [1.7] -8.8 [-2.6] 6.0	5.7 [1.7] -8.2 [-2.4] 6.0		
DR —	-Depressio	n ratio	Total —Total c	apacity x 1000 E	ßtu/h	NOTES: 1) W	hen the entering	air dry bulb is c	other than 75°F	[23.9°C], adjust	the sensible		

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Sens —Sensible capacity x 1000 Btu/h Power —kW input

NOTES: ① When the entering air dry bulb is other than 75°F [23.9°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

GROSS SYSTEMS PERFORMANCE DATA (LOW HUMIDIDRY MODE)-RGECYC036

	ENTERING INDOOR AIR @ 75°F [23.9°C] dbE ①												
	,	wbE	65.3°F [18.5°C]			64°F [17.8°C]			62.5°F [16.9°C]				
	CF	M [L/s]	900 [425]	760 [359]	705 [333]	900 [425]	760 [359]	705 [333]	900 [425]	760 [359]	705 [333]		
OUT DOOR D	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	12.8 [3.7] 3.1 [0.9] 1.1	12.4 [3.6] 2.9 [0.8] 1.1	12.2 [3.6] 2.8 [0.8] 1.1	13.4 [3.9] 5.0 [1.5] 1.3	12.9 [3.8] 4.6 [1.3] 1.3	12.8 [3.7] 4.4 [1.3] 1.3	13.3 [3.9] 6.8 [2.0] 1.3	12.8 [3.8] 6.3 [1.8] 1.3	12.7 [3.7] 6.0 [1.8] 1.3		
	65°F [18.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	12.2 [3.6] 2.4 [0.7] 1.2	11.8 [3.5] 2.2 [0.6] 1.2	11.7 [3.4] 2.1 [0.6] 1.2	12.8 [3.8] 4.2 [1.2] 1.4	12.4 [3.6] 3.9 [1.1] 1.4	12.2 [3.6] 3.8 [1.1] 1.4	12.7 [3.7] 6.1 [1.8] 1.4	12.3 [3.6] 5.6 [1.6] 1.4	12.1 [3.6] 5.4 [1.6] 1.4		
R Y B	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	11.6 [3.4] 1.6 [0.5] 1.3	11.2 [3.3] 1.5 [0.4] 1.3	11.1 [3.2] 1.4 [0.4] 1.3	12.2 [3.6] 3.5 [1.0] 1.5	11.8 [3.5] 3.2 [0.9] 1.5	11.7 [3.4] 3.1 [0.9] 1.5	12.1 [3.5] 5.3 [1.6] 1.5	11.7 [3.4] 4.9 [1.4] 1.5	11.5 [3.4] 4.7 [1.4] 1.5		
U L B T	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	10.9 [3.2] 0.8 [0.2] 1.4	10.5 [3.1] 0.7 [0.2] 1.4	10.4 [3.0] 0.7 [0.2] 1.4	11.5 [3.4] 2.7 [0.8] 1.6	11.1 [3.3] 2.5 [0.7] 1.6	11.0 [3.2] 2.4 [0.7] 1.6	11.4 [3.3] 4.5 [1.3] 1.6	11.0 [3.2] 4.1 [1.2] 1.6	10.9 [3.2] 4.0 [1.2] 1.6		
E M P E R	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	10.1 [3.0] -0.1 [0.0] 1.5	9.8 [2.9] -0.1 [0.0] 1.5	9.7 [2.8] -0.1 [0.0] 1.5	10.7 [3.1] 1.8 [0.5] 1.7	10.4 [3.0] 1.7 [0.5] 1.7	10.2 [3.0] 1.6 [0.5] 1.7	10.6 [3.1] 3.6 [1.1] 1.7	10.3 [3.0] 3.3 [1.0] 1.7	10.1 [3.0] 3.2 [0.9] 1.7		
RATURE °F[℃]	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	9.3 [2.7] -1.0 [-0.3] 1.6	9.0 [2.6] -0.9 [-0.3] 1.6	8.9 [2.6] -0.9 [-0.3] 1.6	9.9 [2.9] 0.9 [0.3] 1.8	9.6 [2.8] 0.8 [0.2] 1.8	9.4 [2.8] 0.8 [0.2] 1.8	9.8 [2.9] 2.7 [0.8] 1.8	9.4 [2.8] 2.5 [0.7] 1.8	9.3 [2.7] 2.4 [0.7] 1.8		
	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	8.3 [2.4] -1.9 [-0.6] 1.7	8.1 [2.4] -1.8 [-0.5] 1.7	8.0 [2.3] -1.7 [-0.5] 1.7	8.9 [2.6] 0.0 [0.0] 1.9	8.7 [2.5] 0.0 [0.0] 1.9	8.5 [2.5] 0.0 [0.0] 1.9	8.8 [2.6] 1.8 [0.5] 1.9	8.5 [2.5] 1.6 [0.5] 1.9	8.4 [2.5] 1.6 [0.5] 1.9		

GROSS SYSTEMS PERFORMANCE DATA (HIGH HUMIDIDRY MODE)-RGECYC036

	ENTERING INDOOR AIR @ 75°F [23.9°C] dbE ①													
wbE 65.3°F [18.5°C]							64°F [17.8°C]			62.5°F [16.9°C]				
	CFI	M [L/s]	1350 [637]	1055 [498]	1050 [496]	1350 [637]	1055 [498]	1050 [496]	1350 [637]	1055 [498]	1050 [496]			
OUTDOOR DRY B	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	16.3 [4.8] 0.2 [0.0] 2.1	15.6 [4.6] 0.1 [0.0] 2.0	15.5 [4.6] 0.1 [0.0] 2.0	16.1 [4.7] 1.8 [0.5] 2.2	15.3 [4.5] 1.6 [0.5] 2.1	15.3 [4.5] 1.6 [0.5] 2.1	14.8 [4.3] 3.2 [0.9] 2.1	14.1 [4.1] 2.8 [0.8] 2.0	14.1 [4.1] 2.8 [0.8] 2.0			
	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	15.6 [4.6] -0.5 [-0.1] 2.2	14.9 [4.4] -0.4 [-0.1] 2.1	14.9 [4.4] -0.4 [-0.1] 2.1	15.4 [4.5] 1.1 [0.3] 2.3	14.6 [4.3] 1.0 [0.3] 2.2	14.6 [4.3] 1.0 [0.3] 2.2	14.1 [4.1] 2.5 [0.7] 2.2	13.4 [3.9] 2.2 [0.7] 2.1	13.4 [3.9] 2.2 [0.7] 2.1			
	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	14.6 [4.3] -1.5 [-0.4] 2.3	13.8 [4.1] -1.4 [-0.4] 2.3	13.8 [4.1] -1.4 [-0.4] 2.3	14.3 [4.2] 0.1 [0.0] 2.4	13.6 [4.0] 0.1 [0.0] 2.4	13.6 [4.0] 0.1 [0.0] 2.4	13.0 [3.8] 1.5 [0.4] 2.3	12.4 [3.6] 1.3 [0.4] 2.3	12.4 [3.6] 1.3 [0.4] 2.3			
U L B T	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	13.1 [3.8] -2.9 [-0.9] 2.5	12.5 [3.7] -2.6 [-0.8] 2.4	12.4 [3.6] -2.6 [-0.8] 2.4	12.8 [3.8] -1.3 [-0.4] 2.6	12.2 [3.6] -1.1 [-0.3] 2.5	12.2 [3.6] -1.1 [-0.3] 2.5	11.6 [3.4] 0.1 [0.0] 2.5	11.0 [3.2] 0.1 [0.0] 2.4	11.0 [3.2] 0.1 [0.0] 2.4			
Ш М Р Ш П	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	11.3 [3.3] -4.7 [-1.4] 2.7	10.7 [3.1] -4.1 [-1.2] 2.6	10.7 [3.1] -4.1 [-1.2] 2.6	11.0 [3.2] -3.0 [-0.9] 2.8	10.5 [3.1] -2.7 [-0.8] 2.7	10.4 [3.1] -2.7 [-0.8] 2.7	9.7 [2.8] -1.6 [-0.5] 2.7	9.3 [2.7] -1.4 [-0.4] 2.6	9.2 [2.7] -1.4 [-0.4] 2.6			
R A T U R E	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	9.1 [2.7] -6.8 [-2] 2.9	8.6 [2.5] -6.0 [-1.8] 2.8	8.6 [2.5] -6.0 [-1.8] 2.8	8.8 [2.6] -5.1 [-1.5] 3.0	8.4 [2.5] -4.5 [-1.3] 2.9	8.4 [2.4] -4.5 [-1.3] 2.9	7.5 [2.2] -3.8 [-1.1] 2.9	7.2 [2.1] -3.3 [-1.0] 2.8	7.2 [2.1] -3.3 [-1.0] 2.8			
E °F [°C]	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	6.5 [1.9] -9.3 [-2.7] 3.1	6.2 [1.8] -8.2 [-2.4] 3.1	6.2 [1.8] -8.2 [-2.4] 3.1	6.2 [1.8] -7.6 [-2.2] 3.2	5.9 [1.7] -6.7 [-2.0] 3.1	5.9 [1.7] -6.7 [-2.0] 3.1	4.9 [1.4] -6.2 [-1.8] 3.1	4.7 [1.4] -5.5 [-1.6] 3.0	4.7 [1.4] -5.5 [-1.6] 3.0			
DR –	DR — Depression ratio Total — Total capacity x 1000 Btu/h NOTES: ① When the entering air dry bulb is other than 75°F [23.9°C], adjust the sensible													

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb **NOTES:** ① When the entering air dry bulb is other than 75°F [23.9°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

Sens —Sensible capacity x 1000 Btu/h Power —kW input

GROSS SYSTEMS PERFORMANCE DATA (LOW HUMIDIDRY MODE)-RGECYC048

				ENTE	RING INDOOR	AIR @ 75°F [2	3.9°C] dbE 🛈				
		wbE	6	5.3°F [18.5°C]]		64°F [17.8°C]		f	62.5°F [16.9°C]
	CF	VI [L/s]	1200 [566]	875 [413]	940 [444]	1200 [566]	875 [413]	940 [444]	1200 [566]	875 [413]	940 [444]
O U T D	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	15.0 [4.4] 0.3 [0.1] 2.4	14.1 [4.1] 0.3 [0.1] 2.3	14.2 [4.2] 0.3 [0.1] 2.3	13.1 [3.8] 0.4 [0.1] 2.4	12.2 [3.6] 0.4 [0.1] 2.3	12.4 [3.6] 0.4 [0.1] 2.4	14.5 [4.3] 4.0 [1.2] 2.1	13.6 [4.0] 3.4 [1.0] 2.0	13.8 [4.0] 3.6 [1.0] 2.0
Ö O R D	65°F [18.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	16.1 [4.7] 1.5 [0.4] 2.2	15.1 [4.4] 1.3 [0.4] 2.1	15.3 [4.5] 1.3 [0.4] 2.1	14.1 [4.1] 1.6 [0.5] 2.2	13.2 [3.9] 1.3 [0.4] 2.2	13.4 [3.9] 1.4 [0.4] 2.2	15.6 [4.6] 5.2 [1.5] 1.9	14.6 [4.3] 4.4 [1.3] 1.8	14.8 [4.3] 4.5 [1.3] 1.8
R Y B	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	16.8 [4.9] 2.2 [0.6] 2.1	15.7 [4.6] 1.9 [0.6] 2.0	15.9 [4.7] 2.0 [0.6] 2.0	14.8 [4.3] 2.3 [0.7] 2.1	13.9 [4.1] 2.0 [0.6] 2.1	14.1 [4.1] 2.0 [0.6] 2.1	16.3 [4.8] 5.9 [1.7] 1.8	15.3 [4.5] 5.0 [1.5] 1.7	15.5 [4.5] 5.2 [1.5] 1.7
U L B	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	17.1 [5.0] 2.6 [0.8] 2.0	16.0 [4.7] 2.2 [0.6] 1.9	16.2 [4.8] 2.3 [0.7] 1.9	15.1 [4.4] 2.7 [0.8] 2.0	14.2 [4.2] 2.3 [0.7] 2.0	14.4 [4.2] 2.4 [0.7] 2.0	16.6 [4.9] 6.3 [1.8] 1.7	15.6 [4.6] 5.3 [1.6] 1.6	15.8 [4.6] 5.5 [1.6] 1.7
-EMPE	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	17.0 [5.0] 2.6 [0.8] 2.0	16.0 [4.7] 2.2 [0.6] 1.9	16.2 [4.7] 2.3 [0.7] 1.9	15.1 [4.4] 2.7 [0.8] 2.0	14.1 [4.1] 2.3 [0.7] 2.0	14.3 [4.2] 2.3 [0.7] 2.0	16.6 [4.9] 6.2 [1.8] 1.7	15.5 [4.6] 5.3 [1.6] 1.6	15.7 [4.6] 5.5 [1.6] 1.6
R A T U R E	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	16.6 [4.9] 2.2 [0.6] 2.0	15.6 [4.6] 1.8 [0.5] 1.9	15.8 [4.6] 1.9 [0.6] 1.9	14.7 [4.3] 2.3 [0.7] 2.0	13.7 [4.0] 1.9 [0.6] 2.0	13.9 [4.1] 2.0 [0.6] 2.0	16.1 [4.7] 5.8 [1.7] 1.7	15.1 [4.4] 5.0 [1.5] 1.6	15.3 [4.5] 5.2 [1.5] 1.7
E °F [°C]	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	15.8 [4.6] 1.4 [0.4] 2.1	14.8 [4.3] 1.2 [0.3] 2.0	15.0 [4.4] 1.2 [0.4] 2.0	13.8 [4.1] 1.5 [0.4] 2.1	13.0 [3.8] 1.3 [0.4] 2.1	13.1 [3.8] 1.3 [0.4] 2.1	15.3 [4.5] 5.1 [1.5] 1.8	14.4 [4.2] 4.3 [1.3] 1.7	14.6 [4.3] 4.5 [1.3] 1.7

GROSS SYSTEMS PERFORMANCE DATA (HIGH HUMIDIDRY MODE)-RGECYC048

				ENTE	RING INDOOR	AIR @ 75°F [2	3.9°C] dbE ①				
		wbE	ť	65.3°F [18.5°C]		64°F [17.8°C]		E	62.5°F [16.9°C]]
	CF	M [L/s]	1800 [850]	1460 [689]	1400 [661]	1800 [850]	1460 [689]	1400 [661]	1800 [850]	1460 [689]	1400 [661]
O U T D	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	25.4 [7.4] 6.8 [2.0] 2.5	24.3 [7.1] 6.1 [1.8] 2.5	24.1 [7.1] 6.0 [1.8] 2.5	24.6 [7.2] 7.1 [2.1] 2.4	23.6 [6.9] 6.4 [1.9] 2.4	23.4 [6.9] 6.3 [1.9] 2.4	21.6 [6.3] 4.6 [1.4] 2.2	20.7 [6.1] 4.2 [1.2] 2.2	20.5 [6.0] 4.1 [1.2] 2.2
O O R D	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	23.5 [6.9] 5.4 [1.6] 2.7	22.5 [6.6] 4.9 [1.4] 2.6	22.4 [6.6] 4.8 [1.4] 2.6	22.7 [6.7] 5.7 [1.7] 2.6	21.8 [6.4] 5.2 [1.5] 2.6	21.6 [6.3] 5.1 [1.5] 2.5	19.7 [5.8] 3.2 [1.0] 2.4	18.9 [5.5] 2.9 [0.9] 2.4	18.7 [5.5] 2.9 [0.8] 2.4
R Y B	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	21.4 [6.3] 3.7 [1.1] 2.9	20.5 [6.0] 3.4 [1.0] 2.9	20.4 [6.0] 3.3 [1.0] 2.9	20.6 [6.1] 4.1 [1.2] 2.9	19.8 [5.8] 3.7 [1.1] 2.8	19.7 [5.8] 3.6 [1.1] 2.8	17.6 [5.2] 1.6 [0.5] 2.7	16.9 [4.9] 1.4 [0.4] 2.6	16.8 [4.9] 1.4 [0.4] 2.6
U L B T	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	19.1 [5.6] 1.8 [0.5] 3.3	18.3 [5.4] 1.6 [0.5] 3.2	18.2 [5.3] 1.6 [0.5] 3.2	18.4 [5.4] 2.1 [0.6] 3.2	17.6 [5.2] 1.9 [0.6] 3.1	17.5 [5.1] 1.9 [0.5] 3.1	15.3 [4.5] -0.4 [-0.1] 3	14.7 [4.3] -0.4 [-0.1] 2.9	14.6 [4.3] -0.3 [-0.1] 2.9
Е Р Е В	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	16.6 [4.9] -0.5 [-0.1] 3.7	16.0 [4.7] -0.4 [-0.1] 3.6	15.8 [4.6] -0.4 [-0.1] 3.6	15.9 [4.7] -0.1 [0.0] 3.6	15.2 [4.5] -0.1 [0.0] 3.5	15.1 [4.4] -0.1 [0.0] 3.5	12.8 [3.8] -2.6 [-0.8] 3.4	12.3 [3.6] -2.4 [-0.7] 3.3	12.2 [3.6] -2.3 [-0.7] 3.3
R A T U R E	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	14.0 [4.1] -3.0 [-0.9] 4.2	13.4 [3.9] -2.7 [-0.8] 4.1	13.3 [3.9] -2.7 [-0.8] 4.1	13.2 [3.9] -2.7 [-0.8] 4.1	12.7 [3.7] -2.4 [-0.7] 4.0	12.6 [3.7] -2.3 [-0.7] 4.0	10.2 [3.0] -5.2 [-1.5] 3.9	9.7 [2.9] -4.7 [-1.4] 3.8	9.7 [2.8] -4.6 [-1.3] 3.8
E °F [°C]	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	11.1 [3.2] -5.8 [-1.7] 4.7	10.6 [3.1] -5.2 [-1.5] 4.7	10.6 [3.1] -5.1 [-1.5] 4.6	10.3 [3.0] -5.5 [-1.6] 4.7	9.9 [2.9] -4.9 [-1.4] 4.6	9.8 [2.9] -4.8 [-1.4] 4.5	7.3 [2.1] -8.0 [-2.3] 4.5	7.0 [2.0] -7.2 [-2.1] 4.4	6.9 [2.0] -7.0 [-2.1] 4.4
DR –	-Depressio	n ratio	Total —Total c	apacity x 1000 I	Btu/h	NOTES: 1 W	/hen the entering	g air dry bulb is o	other than 75°F	[23.9°C], adjust	the sensible

DR —Depression ratio dbE —Entering air dry bulb

NOTES: \odot When the entering air dry bulb is other than 75°F [23.9°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

Sens —Sensible capacity x 1000 Btu/h Power —kW input wbE—Entering air wet bulb

GROSS SYSTEMS PERFORMANCE DATA (LOW HUMIDIDRY MODE)-RGECYC060

				ENTE	RING INDOOR	AIR @ 75°F [2	3.9°C] dbE 🛈				
	,	wbE	E	65.3°F [18.5°C]]		64°F [17.8°C]		E	62.5°F [16.9°C]
	CF	M [L/s]	1500 [708]	1215 [573]	1175 [555]	1500 [708]	1215 [573]	1175 [555]	1500 [708]	1215 [573]	1175 [555]
O U T D	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	26.3 [7.7] 7.2 [2.1] 1.9	25.3 [7.4] 6.5 [1.9] 1.9	25.1 [7.4] 6.4 [1.9] 1.9	24.8 [7.3] 8.1 [2.4] 1.9	23.8 [7.0] 7.3 [2.1] 1.9	23.7 [6.9] 7.2 [2.1] 1.9	24.0 [7.0] 10.0 [2.9] 2.3	23.1 [6.8] 9.0 [2.6] 2.3	22.9 [6.7] 8.9 [2.6] 2.3
O O R D	65°F [18.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	25.7 [7.5] 6.8 [2.0] 2.0	24.7 [7.2] 6.1 [1.8] 1.9	24.5 [7.2] 6.0 [1.8] 1.9	24.2 [7.1] 7.7 [2.3] 2.0	23.2 [6.8] 7.0 [2.0] 2.0	23.1 [6.8] 6.9 [2.0] 2.0	23.4 [6.9] 9.6 [2.8] 2.4	22.5 [6.6] 8.7 [2.5] 2.4	22.3 [6.5] 8.5 [2.5] 2.3
R Y B	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	25 [7.3] 6.3 [1.9] 2.0	24 [7] 5.7 [1.7] 2.0	23.8 [7] 5.6 [1.6] 2.0	23.5 [6.9] 7.2 [2.1] 2.1	22.5 [6.6] 6.5 [1.9] 2.0	22.4 [6.6] 6.4 [1.9] 2.0	22.7 [6.6] 9.1 [2.7] 2.5	21.8 [6.4] 8.2 [2.4] 2.4	21.6 [6.3] 8.1 [2.4] 2.4
U L B T	75°F [23.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	24.1 [7.1] 5.7 [1.7] 2.1	23.1 [6.8] 5.1 [1.5] 2.1	23 [6.7] 5.0 [1.5] 2.1	22.6 [6.6] 6.6 [1.9] 2.2	21.6 [6.3] 6.0 [1.7] 2.1	21.5 [6.3] 5.9 [1.7] 2.1	21.8 [6.4] 8.5 [2.5] 2.6	20.9 [6.1] 7.7 [2.2] 2.5	20.8 [6.1] 7.5 [2.2] 2.5
T E M P E R	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	23.1 [6.8] 4.9 [1.4] 2.2	22.1 [6.5] 4.4 [1.3] 2.2	22.0 [6.4] 4.4 [1.3] 2.2	21.5 [6.3] 5.8 [1.7] 2.3	20.6 [6.0] 5.3 [1.5] 2.2	20.5 [6.0] 5.2 [1.5] 2.2	20.7 [6.1] 7.7 [2.3] 2.7	19.9 [5.8] 7.0 [2.0] 2.6	19.8 [5.8] 6.9 [2.0] 2.6
ATURE	85°F [29.4°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	21.9 [6.4] 4.0 [1.2] 2.4	21.0 [6.1] 3.6 [1.1] 2.3	20.8 [6.1] 3.6 [1.0] 2.3	20.3 [6.0] 5.0 [1.5] 2.4	19.5 [5.7] 4.5 [1.3] 2.4	19.4 [5.7] 4.4 [1.3] 2.4	19.6 [5.7] 6.8 [2.0] 2.8	18.8 [5.5] 6.2 [1.8] 2.8	18.6 [5.5] 6.1 [1.8] 2.8
E °F [°C]	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	20.5 [6.0] 3.0 [0.9] 2.5	19.7 [5.8] 2.7 [0.8] 2.5	19.6 [5.7] 2.7 [0.8] 2.5	19.0 [5.6] 3.9 [1.2] 2.6	18.2 [5.3] 3.5 [1.0] 2.5	18.1 [5.3] 3.5 [1.0] 2.5	18.2 [5.3] 5.8 [1.7] 3.0	17.5 [5.1] 5.2 [1.5] 2.9	17.4 [5.1] 5.2 [1.5] 2.9

GROSS SYSTEMS PERFORMANCE DATA (HIGH HUMIDIDRY MODE) – RGECYC060

				ENTE	RING INDOOR	AIR @ 75°F [2	3.9°C] dbE ①				
	1	wbE	E	5.3°F [18.5°C]]		64°F [17.8°C]		6	2.5°F [16.9°C]]
	CFI	M [L/s]	2250 [1062]	1840 [868]	1750 [826]	2250 [1062]	1840 [868]	1750 [826]	2250 [1062]	1840 [868]	1750 [826]
O U T D	60°F [15.6°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	37.3[10.9] 20.1 [5.9] 3.2	35.8[10.5] 18.2 [5.3] 3.1	35.5[10.4] 17.8 [5.2] 3.1	35.2[10.3] 18.6 [5.5] 3.0	33.9 [9.9] 16.9 [4.9] 3.0	33.6 [9.8] 16.5 [4.8] 3.0	34.4[10.1] 20.6 [6.0] 3.1	33.0 [9.7] 18.6 [5.5] 3.1	32.7 [9.6] 18.2 [5.3] 3.1
O O R D	70°F [21.1°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	35.3[10.3] 18.2 [5.3] 3.3	33.9 [9.9] 16.5 [4.8] 3.2	33.6 [9.9] 16.1 [4.7] 3.2	33.3 [9.8] 16.7 [4.9] 3.2	32.0 [9.4] 15.1 [4.4] 3.1	31.7 [9.3] 14.8 [4.3] 3.1	32.4 [9.5] 18.7 [5.5] 3.3	31.2 [9.1] 16.9 [5.0] 3.2	30.9 [9.1] 16.5 [4.8] 3.2
R Y B	80°F [26.7°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	32.8 [9.6] 15.7 [4.6] 3.6	31.5 [9.2] 14.2 [4.2] 3.5	31.3 [9.2] 13.9 [4.1] 3.5	30.8 [9.0] 14.2 [4.2] 3.5	29.6 [8.7] 12.9 [3.8] 3.4	29.3 [8.6] 12.6 [3.7] 3.4	29.9 [8.8] 16.2 [4.7] 3.6	28.8 [8.4] 14.6 [4.3] 3.5	28.5 [8.4] 14.3 [4.2] 3.5
U L B T	90°F [32.2°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	29.7 [8.7] 12.6 [3.7] 3.9	28.6 [8.4] 11.4 [3.3] 3.9	28.3 [8.3] 11.1 [3.3] 3.8	27.7 [8.1] 11.1 [3.3] 3.8	26.6 [7.8] 10.1 [3.0] 3.7	26.4 [7.7] 9.8 [2.9] 3.7	26.9 [7.9] 13.1 [3.8] 3.9	25.8 [7.6] 11.8 [3.5] 3.8	25.6 [7.5] 11.6 [3.4] 3.8
Е М Р Е R	100°F [37.8°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	26.1 [7.7] 8.9 [2.6] 4.4	25.1 [7.4] 8.1 [2.4] 4.3	24.9 [7.3] 7.9 [2.3] 4.3	24.1 [7.1] 7.4 [2.2] 4.3	23.1 [6.8] 6.7 [2.0] 4.2	22.9 [6.7] 6.6 [1.9] 4.2	23.2 [6.8] 9.4 [2.7] 4.4	22.3 [6.5] 8.5 [2.5] 4.3	22.1 [6.5] 8.3 [2.4] 4.3
A T U R	110°F [43.3°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	21.9 [6.4] 4.6 [1.4] 4.9	21.1 [6.2] 4.2 [1.2] 4.8	20.9 [6.1] 4.1 [1.2] 4.8	19.9 [5.8] 3.2 [0.9] 4.8	19.1 [5.6] 2.9 [0.8] 4.7	18.9 [5.5] 2.8 [0.8] 4.7	19.0 [5.6] 5.1 [1.5] 4.9	18.3 [5.4] 4.6 [1.4] 4.8	18.1 [5.3] 4.5 [1.3] 4.8
E °F [°C]	120°F [48.9°C]	Total kBtu/h [kW] Sens kBtu/h [kW] Power	17.2 [5.0] -0.3 [-0.1] 5.6	16.5 [4.8] -0.2 [-0.1] 5.5	16.3 [4.8] -0.2 [-0.1] 5.4	15.1 [4.4] -1.7 [-0.5] 5.5	14.5 [4.3] -1.6 [-0.5] 5.4	14.4 [4.2] -1.5 [-0.4] 5.3	14.3 [4.2] 0.2 [0.1] 5.6	13.7 [4.0] 0.2 [0.1] 5.4	13.6 [4.0] 0.2 [0.1] 5.4
	-Depressio		Total —Total c			NOTES: 1) W			other than 75°F		

DR — Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb **NOTES:** ① When the entering air dry bulb is other than 75°F [23.9°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

Sens —Sensible capacity x 1000 Btu/h

Manufacturer External Static Pressure - Inches W.C. [kPa] Unit Model Recommended CFM/ Motor Motor Speed 0.2 0.4 0.5 0.7 0.8 (Tonnage) **Airflow Range** HP [W] WATTS (Min/Max) CFM [.02] [.05] [.07] [.10] [.12] [.15] [.17] [.20] CFM 3/4 HP [559] Fan - Tap 1 WATTS CFM 3/4 HP [559] Tap 2 WATTS CFM RGECYB036 (3T) 1050/1350 3/4 HP [559] Tap 3 WATTS CFM Cooling - Tap 4 * 3/4 HP [559] WATTS CFM High Speed -3/4 HP [559] Tap 5 WATTS CFM 3/4 HP [559] Fan - Tap 1 WATTS CFM 3/4 HP [559] Tap 2 WATTS CFM RGECYB048 (4T) 1400/1800 3/4 HP [559] Tap 3 WATTS CFM 3/4 HP [559] Cooling - Tap 4 * WATTS CFM High Speed -3/4 HP [559] Tap 5 WATTS CFM 1 HP [745] Fan - Tap 1 WATTS CFM 1 HP [745] Tap 2 WATTS CFM RGECYB060 (5T) 1750/2250 1 HP [745] Tap 3 WATTS CFM 1 HP [745] Cooling - Tap 4 * WATTS CFM High Speed -1 HP [745] Tap 5 WATTS CFM Fan/Low Heat -1.2 HP [895] Tap 1 WATTS CFM 1.2 HP [895] High Heat - Tap 2 WATTS CFM RGECYB072 (6T) 2100/2700 1.2 HP [895] Low Cool - Tap 3 WATTS CFM 1.2 HP [895] High Cool - Tap 4 WATTS CFM High Speed -1.2 HP [895] Tap 5 WATTS

3-6T-LOW STATIC-SIDEFLOW (208-230V/575V)

NOTES: *Tap 4 - Factory Cooling Tap

Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

3-6T-HIGH STATIC-SIDEFLOW (208-230V/575V)

Init Madal	Manufacturer Becommended	Meter		0584/		Exterr	al Statio	: Pressu	re - Inch	ies W.C.	[kPa]	
Unit Model (Tonnage)	Recommended Airflow Range (Min/Max) CFM	Motor HP [W]	Motor Speed	CFM/ WATTS	0.8 [.2]	0.9 [.22]	1 [.25]	1.1 [.27]	1.2 [.3]	1.3 [.32]	1.4 [.35]	1.5 [.37]
		1 E HD [1110]	Fan Tan 1	CFM	580	502	431	367	316	257	195	127
		1.5 HP [1119]	Fan - Tap 1	WATTS	210	217	223	228	234	240	246	252
			Top 0	CFM	1105	1047	984	923	863	800	740	684
		1.5 HP [1119]	Tap 2	WATTS	372	383	393	404	413	421	429	438
	1050/1050		Top 0	CFM	1302	1245	1193	1138	1080	1018	963	906
RGECYB036 (3T)	1050/1350	1.5 HP [1119]	Tap 3	WATTS	462	475	486	497	509	520	532	539
			Cooling Top 4 *	CFM	1068	1008	953	888	824	767	719	670
		1.5 HP [1119]	Cooling - Tap 4 *	WATTS	320	328	337	345	355	363	373	380
			High Speed -	CFM	1105	1047	984	923	863	800	740	684
		1.5 HP [1119]	Tap 5	WATTS	372	383	393	404	413	421	429	438
			Fan Tan 4	CFM	1055	991	916	847	788	734	671	617
		1.5 HP [1119]	Fan - Tap 1	WATTS	349	357	369	380	389	399	408	414
			T. 0	CFM	1360	1311	1264	1214	1162	1105	1050	992
		1.5 HP [1119]	Tap 2	WATTS	495	507	517	530	540	554	568	585
			. .	CFM	1421	1369	1321	1271	1217	1167	1114	1053
RGECYB048 (4T)	1400/1800	1.5 HP [1119]	Tap 3	WATTS	526	539	550	563	575	586	602	616
				CFM	1188	1128	1073	1009	948	883	828	775
		1.5 HP [1119]	Cooling - Tap 4 *	WATTS	406	415	428	439	449	462	471	480
			High Speed -	CFM	1495	1443	1394	1345	1292	1248	1195	1140
		1.5 HP [1119]	Tap 5	WATTS	567	581	596	607	620	631	646	658
				CFM	1244	1187	1125	1074	1016	956	878	812
		1.5 HP [1119]	Fan - Tap 1	WATTS	431	439	456	461	477	486	492	510
				CFM	1244	1187	1125	1074	1016	956	878	812
		1.5 HP [1119]	Tap 2	WATTS	431	439	456	461	477	486	492	510
	1750/0050			CFM	1537	1496	1455	1409	1362	1310	1257	1206
RGECYB060 (5T)	1750/2250	1.5 HP [1119]	Tap 3	WATTS	599	613	627	642	653	667	680	696
				CFM	1472	1432	1388	1338	1285	1233	1180	1134
		1.5 HP [1119]	Cooling - Tap 4 *	WATTS	557	570	585	599	610	623	636	649
			High Speed -	CFM	1686	1642	1605	1564	1523	1479	1428	1380
		1.5 HP [1119]	Tap 5	WATTS	707	721	736	750	765	781	795	807
			Fan/Low Heat -	CFM	1237	1182	1137	1076	996	961	906	853
		1.2 HP [895]	Tap 1	WATTS	364	373	386	396	405	409	421	431
				CFM	2043	2004	1953	1917	1879	1828	1783	1750
		1.2 HP [895]	High Heat - Tap 2	WATTS	834	850	861	876	891	906	925	938
	0400/2722			CFM	1149	1082	1030	969	891	837	781	728
RGECYB072 (6T)	2100/2700	1.2 HP [895]	Low Cool - Tap 3	WATTS	338	345	357	365	374	383	393	403
				CFM	2197	2155	2081	2034	1995	1940	1881	1791
		1.2 HP [895]	High Cool - Tap 4	WATTS	1166	1190	1198	1203	1203	1203	1200	1160
			High Speed -	CFM	2221	2169	2115	2061	1997	1937	1873	1788
		1.2 HP [895]	Tap 5	WATTS	1221	1226	1227	1227	1223	1225	1208	1160

NOTES: *Tap 4 - Factory Cooling Tap

Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

3-6T-LOW STATIC-SIDEFLOW (460V)

Unit Medal	Manufacturer Recommended	Meter		0514/		Extern	al Statio	: Pressu	Inches W.C. [kPa] 0.5 0.6 0.7 0.8 [.12] [.15] [.17] [.20 562 477 388 313 125 130 135 140 843 767 669 597 176 184 193 200 1473 1413 1364 131 418 432 444 457 1253 1190 1128 107 301 313 322 332 1373 1316 1261 120 367 379 392 404 707 545 445 356 148 154 160 166				
Unit Model (Tonnage)	Recommended Airflow Range (Min/Max) CFM	Motor HP [W]	Motor Speed	CFM/ WATTS	0.1 [.02]	0.2 [.05]	0.3 [.07]	0.4 [.10]					
		2/4 LID [550]	Fon Ton 1	CFM	957	867	777	686	562	477	388	31	
		3/4 HP [559]	Fan - Tap 1	WATTS	94	102	110	117	125	130	135	14	
		2/4 LID [550]	Ten 0	CFM	1155	1076	1001	922	843	767	669	59	
		3/4 HP [559]	Tap 2	WATTS	140	150	159	168	176	184	193	20	
	1050/1350	2/4 HD [550]	Tap 2	CFM	1697	1641	1586	1530	1473	1413	1364	13	
RGECYB036 (3T)	1050/1350	3/4 HP [559]	Tap 3	WATTS	365	378	390	404	418	432	444	45	
		2/4 HD [550]	Cooling Top 4 *	CFM	1499	1436	1370	1309	1253	1190	1128	10	
		3/4 HP [559]	Cooling - Tap 4 *	WATTS	254	266	279	291	301	313	322	33	
		2/4 HD [550]	High Speed -	CFM	1612	1551	1493	1435	1373	1316	1261	12	
		3/4 HP [559]	Tap 5	WATTS	316	329	341	353	367	379	392	40	
		2/4 HD [550]	Ean Tan 1	CFM	1061	965	882	801	707	545	445	35	
		3/4 HP [559]	Fan - Tap 1	WATTS	114	124	132	140	148	154	160	1	
		2/4 HD [550]	Tap 0	CFM	1319	1247	1172	1105	1039	962	884	8	
		3/4 HP [559]	Tap 2	WATTS	189	200	211	221	231	242	250	2	
	1400/1800	2/4 HD [550]	Tap 2	CFM	1737	1684	1624	1564	1509	1453	1400	13	
RGEC 10040 (41)	1400/1600	3/4 HP [559]	Tap 3	WATTS	374	391	404	417	430	445	458	4	
		0/4 LID [550]	Cooling Top 4 *	CFM	1805	1749	1698	1650	1602	1557	1504	14	
		3/4 HP [559]	Cooling - Tap 4 *	WATTS	420	435	449	461	475	490	504	5	
		2/4 LID [550]	High Speed -	CFM	1923	1862	1813	1763	1711	1657	1610	15	
		3/4 HP [559]	Tap 5	WATTS	485	500	514	532	545	563	576	59	
		1 UD [745]	Fon Ton 1	CFM	1107	1017	936	865	793	711	592	52	
		1 HP [745]	Fan - Tap 1	WATTS	126	135	143	151	158	166	174	1	
		1 110 [745]	Ten 0	CFM	1216	1140	1075	993	922	859	790	7	
		1 HP [745]	Tap 2	WATTS	159	168	177	185	193	202	211	2	
	1750/0050	1 110 [745]	Tap 0	CFM	1770	1714	1658	1598	1545	1485	1432	13	
RGECTD000 (01)	1750/2250	1 HP [745]	Tap 3	WATTS	394	407	420	434	447	459	471	4	
		1 UD [745]	Cooling - Tap 4 *	CFM	2078	2041	1991	1925	1867	1827	1780	17	
		1 HP [745]	6001111g - Tap 4	WATTS	606	620	635	651	667	680	695	7(
RGECYB048 (4T)		1 UD [746]	High Speed -	CFM	2192	2151	2105	2056	2005	1961	1923	18	
		1 HP [745]	Tap 5	WATTS	720	737	752	767	784	801	815	83	
		1.0 UD [005]	Fan/Low Heat -	CFM	1384	1319	1249	1188	1127	1066	1006	94	
		1.2 HP [895]	Tap 1	WATTS	192	204	215	225	240	245	255	20	
		1.0 HD [005]	High Heat Tap 0	CFM	1863	1821	1765	1717	1650	1617	1571	15	
		1.2 HP [895]	High Heat - Tap 2	WATTS	413	428	442	459	474	488	503	5	
	2100/2700			CFM	1546	1488	1427	1372	1316	1261	1203	11	
GECYB072 (6T)	2100/2700	1.2 HP [895]	Low Cool - Tap 3	WATTS	258	270	282	298	310	318	330	33	
				CFM	2395	2349	2295	2250	2199	2151	2108	20	
NGLO 15072 (01)		1.2 HP [895]	High Cool - Tap 4	WATTS	928	943	961	976	987	1001	1016	10	
			High Speed -	CFM	2441	2398	2367	2320	2276	2218	2170	21	
		1.2 HP [895]	Tap 5	WATTS	989	1008	1035	1046	1055	1075	1089	10	

NOTES: *Tap 4 - Factory Cooling Tap Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

3-6T-HIGH STATIC-SIDEFLOW (460V)

11m:4 M	Manufacturer	Matar		0514/								
Unit Model (Tonnage)	Recommended Airflow Range (Min/Max) CFM	Motor HP [W]	Motor Speed	CFM/ WATTS	0.8 [.2]	0.9 [.22]	1 [.25]	1.1 [.27]	1.2 [.3]	1.3 [.32]	1.4 [.35]	1.5 [.37
			Fon Ton 1	CFM	729	644	554	499	438	386	329	278
		1 HP [745]	Fan - Tap 1	WATTS	226	233	240	245	252	257	262	267
		1 110 [746]	Tep 0	CFM	729	644	554	499	438	386	329	27
		1 HP [745]	Tap 2	WATTS	226	233	240	245	252	257	262	26
	1050/1350	1 UD [746]	Tap 2	CFM	1465	1421	1372	1320	1272	1226	1176	112
RGECYB036 (3T)	1000/1000	1 HP [745]	Tap 3	WATTS	535	547	559	571	583	593	603	61
		1 UD [745]	Cooling Tap 4 *	CFM	1012	951	873	808	740	679	623	57
		1 HP [745]	Cooling - Tap 4 *	WATTS	313	322	332	340	349	357	363	37
		1 UD [746]	High Speed -	CFM	1345	1292	1239	1184	1135	1082	1016	94
		1 HP [745]	Tap 5	WATTS	460	472	483	493	503	513	525	53
		1 110 [746]	For Ton 1	CFM	871	794	722	654	580	526	466	41
		1 HP [745]	Fan - Tap 1	WATTS	267	275	283	290	297	303	310	31
		1 110 [746]	Tep 0	CFM	1344	1292	1239	1192	1138	1084	1007	95
		1 HP [745]	Tap 2	WATTS	458	470	481	490	500	510	525	53
RGECYB048 (4T)	1 400/1000		Ter 0	CFM	1514	1464	1415	1374	1323	1275	1228	118
RGEGYB048 (41)	1400/1800	1 HP [745]	Tap 3	WATTS	561	576	589	600	611	622	633	64
			Ocalian Ten 4 t	CFM	1423	1376	1328	1277	1227	1184	1139	100
		1 HP [745]	Cooling - Tap 4 *	WATTS	509	521	533	544	555	565	576	58
			High Speed -	CFM	1589	1545	1497	1463	1413	1367	1317	12
		1 HP [745]	Tap 5	WATTS	618	633	647	660	672	683	695	70
		1.0.110 [005]	Fon Ton 1	CFM	1091	1034	983	924	865	790	724	66
		1.2 HP [895]	Fan - Tap 1	WATTS	343	353	359	371	380	387	396	40
			Ter 0	CFM	1091	1034	983	924	865	790	724	66
		1.2 HP [895]	Tap 2	WATTS	343	353	359	371	380	387	396	40
	1750/0050		Ter 0	CFM	1841	1794	1748	1703	1657	1615	1578	153
RGECYB060 (5T)	1750/2250	1.2 HP [895]	Tap 3	WATTS	794	809	826	836	847	859	870	87
			Occline Tee 4 t	CFM	1762	1714	1669	1624	1580	1538	1496	14
		1.2 HP [895]	Cooling - Tap 4 *	WATTS	736	749	763	774	786	797	807	81
			High Speed -	CFM	2046	2004	1970	1921	1880	1835	1801	17
		1.2 HP [895]	Tap 5	WATTS	980	997	1003	1025	1045	1059	1072	109
		1.0.110 (005)	Fan/Low Heat -	CFM	1237	1182	1137	1076	996	961	906	85
		1.2 HP [895]	Tap 1	WATTS	364	373	386	396	405	409	421	43
				CFM	2043	2004	1953	1917	1879	1828	1783	17
		1.2 HP [895]	High Heat - Tap 2	WATTS	834	850	861	876	891	906	925	93
	0100/0700			CFM	1149	1082	1030	969	891	837	781	72
RGECYB072 (6T)	2100/2700	1.2 HP [895]	Low Cool - Tap 3	WATTS	338	345	357	365	374	383	393	40
				CFM	2054	2002	1952	1901	1852	1817	1778	17
		1.2 HP [895]	High Cool - Tap 4	WATTS	1032	1045	1061	1081	1097	1110	1128	113
			High Speed -	CFM	2118	2068	2010	1965	1924	1884	1829	179
		1.2 HP [895]	Tap 5	WATTS	1094	1110	1131	1151	1166	1189	1181	118

NOTES: *Tap 4 - Factory Cooling Tap Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

	Manufacturer			0.511/	External Static Pressure - Inches W.C. [kPa]							
Unit Model (Tonnage)	Recommended Airflow Range (Min/Max) CFM	Motor HP [W]	Motor Speed	CFM/ WATTS	0.1 [.02]	0.2 [.05]	0.3 [.07]	0.4 [.10]	0.5 [.12]	0.6 [.15]	0.7 [.17]	0.8 [.20]
		3/4 HP [559]	Fan - Tap 1	CFM	1419	1348	1278	1213	1146	1085	1012	946
		5/4 HF [559]	Tail-Tap T	WATTS	203	214	224	234	244	255	264	273
		3/4 HP [559]	Tap 2	CFM	1615	1558	1503	1439	1380	1320	1268	1208
		5/4 HF [559]	Tap 2	WATTS	288	299	311	322	333	345	358	370
RGECYC036 (3T)	1050/1350	3/4 HP [559]	Tap 3	CFM	951	861	762	675	552	479	407	344
RGEC 10030 (31)	1050/1350	3/4 HF [559]	iap o	WATTS	85	93	100	107	114	120	126	131
		2/4 HD [550]	Cooling - Tap 4 *	CFM	1393	1323	1256	1184	1122	1054	978	907
		3/4 HP [559]	Cooling - Tap 4	WATTS	195	205	216	226	236	245	254	263
		3/4 HP [559]	High Speed -	CFM	1745	1686	1632	1578	1525	1463	1404	1357
		3/4 ПР [559]	Tap 5	WATTS	345	358	370	382	393	408	422	433
		2/4 UD [550]	Fan Tan 1	CFM	1498	1437	1372	1318	1259	1205	1148	1091
		3/4 HP [559]	Fan - Tap 1	WATTS	260	272	284	294	306	317	326	337
		3/4 HP [559]	Tar 0	CFM	1796	1738	1684	1628	1573	1523	1466	1418
		3/4 HP [559]	Tap 2	WATTS	408	422	436	449	462	474	488	499
	1400/1000	2/4 UD [550]	Top 0	CFM	1087	873	799	709	598	519	445	372
RGECYC048 (4T)	1400/1800	3/4 HP [559]	Tap 3	WATTS	118	103	109	117	122	130	134	140
		0/4 UD (550)	0	CFM	1734	1675	1624	1574	1515	1465	1412	1359
		3/4 HP [559]	Cooling - Tap 4 *	WATTS	376	390	402	415	428	441	451	461
			High Speed -	CFM	1952	1892	1850	1793	1754	1698	1651	1601
		3/4 HP [559]	Tap 5	WATTS	516	533	546	561	573	589	605	620
			E. T. A	CFM	1525	1458	1406	1345	1287	1233	1172	1117
		1 HP [745]	Fan - Tap 1	WATTS	280	295	307	320	332	343	354	368
			T. 0	CFM	1804	1758	1704	1650	1597	1545	1494	1449
		1 HP [745]	Tap 2	WATTS	441	453	467	482	497	512	524	541
	1750/0050		T- 0	CFM	1342	1279	1213	1149	1083	1016	953	893
RGECYC060 (5T)	1750/2250	1 HP [745]	Tap 3	WATTS	207	218	229	238	248	259	269	277
			0 // T (†	CFM	2087	2037	1989	1945	1907	1868	1833	1792
		1 HP [745]	Cooling - Tap 4 *	WATTS	655	670	687	702	718	737	762	783
			High Speed -	CFM	2183	2138	2093	2051	2009	1967	1928	1889
	1	1 HP [745]	Tap 5	WATTS	755	770	791	805	824	842	858	877

3-5T-LOW STATIC-SIDEFLOW (208-230V)

NOTES: *Tap 4 - Factory Cooling Tap Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

FER testing - 3 ton model, 100K heating input, use Tap 3 as Q max

3-5T-HIGH STATIC-	-SIDEFLOW (208-230V)
-------------------	----------------------

linit Medel								[kPa]				
			Motor Speed		0.8 [.2]	0.9 [.22]	1 [.25]	1.1 [.27]	1.2 [.3]	1.3 [.32]	1.4 [.35]	1.5 [.37]
		1.5 HP [1119]	Fan - Tap 1	CFM	1387	1330	1274	1220	1165	1101	1054	999
		1.5116 [1118]	Tail-Tap T	WATTS	444	456	467	478	490	502	512	522
		1.5 HP [1119]	Tap 2	CFM	1600	1549	1505	1462	1408	1360	1304	1250
			14p 2	WATTS	561	576	589	602	615	627	640	652
RGECYC036 (3T)	1050/1350	1.5 HP [1119]	Tap 3	CFM	317	203	145				—	—
1102010000 (01)	1000/1000		140 0	WATTS	123	128	128	—	—	—	—	
		1.5 HP [1119]	Cooling - Tap 4 *	CFM	884	809	733	679	628	571	534	479
				WATTS	255	261	269	276	284	291	299	304
		1.5 HP [1119]	High Speed -	CFM	1375	1317	1260	1207	1147	1097	1037	978
			Tap 5	WATTS	439	450	462	473	484	493	504	514
		1.5 HP [1119]	Fan - Tap 1	CFM	1675	1631	1579	1539	1490	1451	1418	1378
				WATTS	639	652	668	682	694	711	726	743
		1.5 HP [1119]	Tap 2	CFM	1738	1691	1639	1597	1553	1505	1467	1429
		1.5116 [1118]		WATTS	681	694	712	727	739	752	767	777
RGECYC048 (4T)		1.5 HP [1119]	Tap 3	CFM	381	328	254	166	_	—	—	
	1.00, 1000			WATTS	135	140	146	148	_	_	_	
		1.5 HP [1119]	Cooling - Tap 4 *	CFM	1349	1297	1244	1191	1140	1078	1036	985
				WATTS	444	457	468	479	489	498	508	519
		1.5 HP [1119]	High Speed -	CFM	1792	1754	1704	1662	1616	1571	1538	1503
			Tap 5	WATTS	725	739	756	772	785	801	816	831
		1.5 HP [1119]	Fan - Tap 1	CFM	1489	1442	1399	1353	1313	1270	1224	1135
				WATTS	550	563	575	586	595	609	620	607
		1.5 HP [1119]	Tap 2	CFM	1856	1812	1767	1725	1679	1639	1600	1558
			14p 2	WATTS	810	823	843	857	870	886	903	920
BGECYC060 (5T)	RGECYC060 (5T) 1750/2250 1.5 HP [111 1.5 HP [111	1 5 HP [1110]	Tap 3	CFM	896	829	752	692	632	580	527	473
			iup o	WATTS	265	272	281	286	293	298	306	303
		1 5 HP [1110]	Cooling - Tap 4 *	CFM	1761	1715	1671	1629	1586	1533	1493	1450
				WATTS	736	752	767	781	793	809	813	827
15	1.5 HP [1119]	High Speed -	CFM	1996	1965	1916	1873	1852	1809	1773	1740	
		1.5111 [1118]	Tap 5	WATTS	957	968	985	1009	1015	1037	1060	1081

NOTES: *Tap 4 - Factory Cooling Tap

Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

FER testing - 3 ton model, 100K heating input, use Tap 3 as Q max

3-5T-LOW STATIC-SIDEFLOW (460V)

Unit Model	Manufacturer	Matar		0514/		External Static Pressure - Inches W.C. [kPa]					[kPa]	
Unit Model (Tonnage)	Recommended Airflow Range (Min/Max) CFM	Motor HP [W]	Motor Speed	CFM/ WATTS	0.1 [.02]	0.2 [.05]	0.3 [.07]	0.4 [.10]	0.5 [.12]	0.6 [.15]	0.7 [.17]	0.8 [.20]
		3/4 HP [559]	Fan - Tap 1	CFM	1390	1321	1254	1190	1128	1067	994	923
		5/4 HP [559]	Tail-Tap T	WATTS	198	208	219	229	239	250	260	270
		3/4 HP [559]	Tap 2	CFM	1601	1543	1479	1420	1358	1298	1244	1182
		0/4111 [000]	ταρ 2	WATTS	279	290	302	313	325	338	349	362
RGECYC036 (3T)	1050/1350	3/4 HP [559]	Tap 3	CFM	943	854	753	658	543	471	395	324
NGEC 10000 (01)	1050/1550	5/4 HP [559]	Tap 5	WATTS	82	90	97	104	110	117	122	128
		3/4 HP [559]	Cooling - Tap 4	CFM	1374	1311	1238	1172	1106	1035	960	892
		3/4 HF [559]	0001111y - Tap 4	WATTS	189	199	209	219	229	240	250	258
		3/4 HP [559]	High Speed -	CFM	1720	1661	1604	1545	1492	1444	1384	1336
		3/4 HF [559]	Tap 5	WATTS	334	347	360	372	383	397	411	424
			Fan - Tap 1	CFM	1494	1422	1364	1309	1246	1191	1132	1078
		3/4 HP [559]	ган - тар т	WATTS	250	261	273	285	297	308	319	329
	1400/1800	3/4 HP [559]	Top 0	CFM	1742	1687	1632	1584	1530	1482	1420	1370
		3/4 HP [559]	Tap 2	WATTS	375	388	400	412	427	438	452	466
RGECYC048 (4T)		0/4 UD [550]	Top 0	CFM	958	871	785	703	583	509	440	370
NGEG 16040 (41)	1400/1600	3/4 HP [559]	Tap 3	WATTS	91	99	106	113	120	126	132	137
		0/4 UD [550]	Cooling Top 4 *	CFM	1720	1664	1609	1560	1511	1463	1404	1351
		3/4 HP [559]	Cooling - Tap 4 *	WATTS	363	375	388	400	414	425	440	454
			Link Oracid. Ten 5	CFM	1931	1877	1831	1777	1728	1681	1638	1596
		3/4 HP [559]	High Speed - Tap 5	WATTS	497	511	525	539	554	567	581	596
			Fee Tee 4	CFM	1244	1168	1096	1031	963	905	841	761
		1 HP [745]	Fan - Tap 1	WATTS	172	182	192	202	211	219	226	234
			T. 0	CFM	1824	1775	1722	1666	1607	1561	1513	1468
		1 HP [745]	Tap 2	WATTS	448	463	475	490	503	516	531	547
	1750/0050		T. 0	CFM	1315	1249	1182	1114	1047	994	928	862
RGECYC060 (5T)	1750/2250	1 HP [745]	Tap 3	WATTS	199	208	219	229	238	246	255	263
			Occline Ter 1 t	CFM	2083	2033	1991	1951	1914	1873	1834	1795
		1 HP [745]	Cooling - Tap 4 *	WATTS	663	681	694	713	731	749	767	788
			High Speed -	CFM	2198	2162	2120	2077	2033	1984	1950	1896
	1 HP [745]	1 HP [745]	Tap 5	WATTS	774	792	807	822	838	856	876	896

NOTES: *Tap 4 - Factory Cooling Tap

Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

3-5T-HIGH STATIC-SIDEFLOW (460V)

Unit Model	Manufacturer	Matar		0514/		Exterr	al Statio	: Pressu	re - Inch	es W.C.	[kPa]	
Unit Model (Tonnage)	Recommended Airflow Range (Min/Max) CFM	Motor HP [W]	Motor Speed	CFM/ WATTS	0.8 [.2]	0.9 [.22]	1 [.25]	1.1 [.27]	1.2 [.3]	1.3 [.32]	1.4 [.35]	1.5 [.37]
		1 HP [745]	Fan - Tap 1	CFM	692	628	557	485	427	369	275	229
			ταπ-ταρτ	WATTS	212	219	224	230	240	245	252	255
		1 HP [745]	Tap 2	CFM	1471	1415	1368	1321	1272	1218	1162	1118
				WATTS	508	524	536	546	560	570	582	593
RGECYC036 (3T)	1050/1350	1 HP [745]	Tap 3	CFM	280	183	83			—	_	—
	1050/1350		Τάρ Ο	WATTS	127	131	135	—	—	—	—	—
		1 HP [745]	Cooling - Tap 4 *	CFM	843	757	700	653	566	514	466	404
	1400/1800			WATTS	253	261	268	275	278	284	299	304
		1 HP [745]	High Speed -	CFM	1351	1293	1236	1180	1124	1059	1010	944
			Tap 5	WATTS	441	454	463	476	487	498	507	516
		1 HP [745]	Fan - Tap 1 -	CFM	1327	1274	1224	1172	1121	1055	1000	952
				WATTS	450	460	470	480	491	503	514	521
		1 HP [745] 1 HP [745]	Tap 2	CFM	1508	1463	1418	1374	1329	1275	1230	1161
			Tap 2	WATTS	555	570	581	593	605	618	629	634
RGECYC048 (4T)			Tap 3	CFM	343	289	204	—	—	—	—	—
NGEG 10040 (41)	1400/1600		Tap S	WATTS	4	139	143	—	—	—	—	—
		1 HP [745]	Cooling - Tap 4 *	CFM	1326	1272	1222	1164	1118	1057	998	949
			6001111g - Tap 4	WATTS	443	455	467	477	488	499	510	520
		1 HD [745]	High Speed -	CFM	1628	1577	1522	1490	1448	1409	1362	1172
		1 HP [745]	Tap 5	WATTS	627	642	656	668	682	694	704	611
			Fan Tan 1	CFM	1145	1087	1031	948	895	832	786	731
		1.2 HP [895]	Fan - Tap 1	WATTS	357	367	374	387	397	404	410	420
			Tan O	CFM	1898	1858	1822	1779	1739	1696	1652	1613
		1.2 HP [895]	Tap 2	WATTS	829	840	850	864	890	897	911	920
	1750/0050		Ter 0	CFM	877	791	715	653	578	516	464	413
RGECYC060 (5T)	1750/2250	1.2 HP [895]	Tap 3	WATTS	257	269	276	282	288	294	301	307
			Cooling Top 4 *	CFM	1840	1791	1745	1697	1662	1617	1574	1529
		1.2 HP [895]	Cooling - Tap 4 *	WATTS	761	784	790	804	815	823	841	855
			High Speed -	CFM	2120	2069	2031	1988	1949	1912	1873	1828
		1.2 HP [895]	Tap 5	WATTS	1019	1045	1060	1074	1090	1100	1118	1125

NOTES: *Tap 4 - Factory Cooling Tap

Pressure drops across the 3-5T CFM range (1050 - 2250): Wet coil: ~0.09 Inches W.C. Downflow: ~0.1 Inches W.C. Reheat coil: ~0.09 Inches W.C.

			ELECTRICAL	DATA – RGE	CYB SERIES	6		
		036ACT	036ACU	036ADT	036ADU	036AJT	036AYT	036AYU
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	518-633	518-633
	Volts	208/230	208/230	460	460	208/230	575	575
Ī	Phase	3	3	3	3	1	3	3
ſ	Hz	60	60	60	60	60	60	60
Ī	Minimum Circuit Ampacity	24	29	10	11	25	9	11
	Minimum Circuit Ampacity with Power Exhaust	27	32	12	13	28	10	12
	Minimum Overcurrent Protection Device Size	30	35	15	15	30	15	15
5	Minimum Overcurrent Protection Device Size with Power Exhaust	30	40	15	15	35	15	15
-	Maximum Overcurrent Protection Device Size	35	40	15	15	35	15	15
-	Maximum Overcurrent Protection Device Size with Power Exhaust	35	40	15	15	40	15	15
5	No.	1	1	1	1	1	1	1
	Volts	208/230	208/230	460	460	208/230	575	575
	Phase	3	3	3	3	1	3	3
	Amps (RLA)	12.8	12.8	5.1	5.1	13.5	4.5	4.5
3	Amps (LRA)	97.5	97.5	44.3	44.3	82.5	27.1	27.1
	No.	1	1	1	1	1	1	1
	Volts	208/230	208/230	460	460	208/230	575	575
	Phase	1	1	1	1	1	1	1
	HP	1/5	1/5	1/5	1/5	1/5	1/5	1/5
	Amps (FLA, each)	1	1	0.8	0.8	1	0.55	0.55
	Amps (LRA, each)	2.3	2.3	1.4	1.4	2.3	1.1	1.1
	No.	1	1	1	1	1	1	1
	Volts	208/230	208/230	460	460	208/230	208/230	208/230
	Phase	1	1	1	1	1	1	1
	HP	3/4	1-1/2	3/4	1	3/4	3/4	1-1/2
	Amps (FLA, each)	6	11.5	2.7	3.5	6	2.4	4.6
ľ	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Russell® By Rheem | RGEC Packaged Gas Electric Units

			ELECTRICAL	DATA – RGE	CYB SERIES	6		
		048ACT	048ACU	048ADT	048ADU	048AJT	048AYT	048AYU
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	518-633	518-633
	Volts	208/230	208/230	460	460	208/230	575	575
	Phase	3	3	3	3	1	3	3
	Hz	60	60	60	60	60	60	60
	Minimum Circuit Ampacity	24	30	13	13	30	10	12
nation	Minimum Circuit Ampacity with Power Exhaust	27	33	15	16	34	11	14
Unit Information	Minimum Overcurrent Protection Device Size	30	35	15	15	35	15	15
Uni	Minimum Overcurrent Protection Device Size with Power Exhaust	30	40	20	20	40	15	15
	Maximum Overcurrent Protection Device Size	35	40	15	15	45	15	15
	Maximum Overcurrent Protection Device Size with Power Exhaust	35	40	20	20	50	15	15
tor	No.	1	1	1	1	1	1	1
Compressor Motor	Volts	208/230	208/230	460	460	208/230	575	575
SSOI	Phase	3	3	3	3	1	3	3
npre	Amps (RLA)	12.2	12.2	6.4	6.4	17.3	5.1	5.1
Con	Amps (LRA)	120.4	120.4	48.5	48.5	126	41	41
	No.	1	1	1	1	1	1	1
Condenser Motor	Volts	208/230	208/230	460	460	208/230	575	575
er M	Phase	1	1	1	1	1	1	1
ensi	HP	1/2	1/2	1/2	1/2	1/2	1/2	1/2
ond	Amps (FLA, each)	2.3	2.3	1.5	1.5	2.3	1	1
0	Amps (LRA, each)	5.1	5.1	3.1	3.1	5.1	2.2	2.2
	No.	1	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	208/230	208/230	208/230
tor	Phase	1	1	1	1	1	1	1
Evaporator Fan	HP	3/4	1-1/2	3/4	1	3/4	3/4	1-1/2
Evaj	Amps (FLA, each)	6	11.5	2.7	3.5	6	2.4	4.6
	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

		ļ	ELECTRICAL	DATA – RGE	CYB SERIES	3		
		060ACT	060ACU	060ADT	060ADU	060AJT	060AYT	060AYU
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	518-633	518-633
	Volts	208/230	208/230	460	460	208/230	575	575
	Phase	3	3	3	3	1	3	3
Ī	Hz	60	60	60	60	60	60	60
Ī	Minimum Circuit Ampacity	30	34	15	15	38	13	14
nation	Minimum Circuit Ampacity with Power Exhaust	33	37	17	17	41	14	15
Unit Information	Minimum Overcurrent Protection Device Size	35	40	20	20	45	15	20
	Minimum Overcurrent Protection Device Size with Power Exhaust	40	45	20	20	50	15	20
	Maximum Overcurrent Protection Device Size	45	45	20	20	50	15	20
	Maximum Overcurrent Protection Device Size with Power Exhaust	45	50	20	20	60	15	20
10	No.	1	1	1	1	1	1	1
Compressor Motor	Volts	208/230	208/230	460	460	208/230	575	575
220	Phase	3	3	3	3	1	3	3
	Amps (RLA)	16	16	7.7	7.7	21.8	6.4	6.4
3 [Amps (LRA)	156.4	156.4	58.1	58.1	143	47.8	47.8
_	No.	1	1	1	1	1	1	1
	Volts	208/230	208/230	460	460	208/230	575	575
5	Phase	1	1	1	1	1	1	1
	HP	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	Amps (FLA, each)	2.3	2.3	1.5	1.5	2.3	1	1
	Amps (LRA, each)	5.1	5.1	3.1	3.1	5.1	2.2	2.2
	No.	1	1	1	1	1	1	1
	Volts	208/230	208/230	460	460	208/230	208/230	208/230
	Phase	1	1	1	1	1	1	1
Evapulatur Fair	HP	1	1-1/2	1	1-1/5	1	1	1-1/2
EVa	Amps (FLA, each)	7.6	11.5	3.5	3.7	7.6	3.04	4.6
ſ	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

		EL	ECTRICAL DAT	A – RGECYB SI	ERIES		
		072ACT	072ACU	072ADT	072ADU	072AYT	072AYU
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-633	518-633
	Volts	208/230	208/230	460	460	575	575
	Phase	3	3	3	3	3	3
	Hz	60	60	60	60	60	60
	Minimum Circuit Ampacity	38	38	18	18	13	13
nation	Minimum Circuit Ampacity with Power Exhaust	41	41	20	20	14	14
Unit Information	Minimum Overcurrent Protection Device Size	45	45	20	20	15	15
Uni	Minimum Overcurrent Protection Device Size with Power Exhaust	50	50	25	25	20	20
	Maximum Overcurrent Protection Device Size	50	50	25	25	15	15
	Maximum Overcurrent Protection Device Size with Power Exhaust	60	60	25	25	20	20
itor	No.	1	1	1	1	1	1
Compressor Motor	Volts	208/230	208/230	460	460	575	575
SSO	Phase	3	3	3	3	3	3
upre	Amps (RLA)	19.2	19.2	9.1	9.1	6.2	6.2
Con	Amps (LRA)	162	162	70.8	70.8	58.2	58.2
	No.	1	1	1	1	1	1
loto	Volts	208/230	208/230	460	460	575	575
er⊠	Phase	1	1	1	1	1	1
ens	HP	3/4	3/4	3/4	3/4	3/4	3/4
Condenser Motor	Amps (FLA, each)	4.2	4.2	2.3	2.3	1.2	1.2
3	Amps (LRA, each)	10.1	10.1	4.9	4.9	3.4	3.4
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	208/230	208/230
Evaporator Fan	Phase	1	1	1	1	1	1
pora	HP	1-1/5	1-1/5	1-1/5	1-1/5	1-1/5	1-1/5
Eval	Amps (FLA, each)	9.6	9.6	3.7	3.7	3.8	3.8
	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A	N/A

		ELECTR	ICAL DATA – RGECYB	SERIES	
		072ACT	072ACU	072ADT	072ADU
			with HUN	MIDIDRY	
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
Unit Information	Volts	208/230	208/230	460	460
	Phase	3	3	3	3
	Hz	60	60	60	60
	Minimum Circuit Ampacity	39	39	18	18
	Minimum Circuit Ampacity with Power Exhaust	42	42	20	20
	Minimum Overcurrent Protection Device Size	45	45	20	20
'n	Minimum Overcurrent Protection Device Size with Power Exhaust	50	50	25	25
	Maximum Overcurrent Protection Device Size	50	50	25	25
	Maximum Overcurrent Protection Device Size with Power Exhaust	60	60	25	25
otor	No.	1	1	1	1
Compressor Motor	Volts	208/230	208/230	460	460
SSO	Phase	3	3	3	3
npre	Amps (RLA)	19.2	19.2	9.1	9.1
Cor	Amps (LRA)	162	162	70.8	70.8
L	No.	1	1	1	1
loto	Volts	208/230	208/230	460	460
Condenser Motor	Phase	1	1	1	1
lens	HP	3/4	3/4	3/4	3/4
Cond	Amps (FLA, each)	5.3	5.3	2.3	2.3
0	Amps (LRA, each)	N/A	N/A	N/A	N/A
	No.	1	1	1	1
Evaporator Fan	Volts	208/230	208/230	460	460
ator	Phase	1	1	1	1
por	HP	1-1/5	1-1/5	1-1/5	1-1/5
Eva	Amps (FLA, each)	9.6	9.6	3.7	3.7
	Amps (LRA, each)	N/A	N/A	N/A	N/A

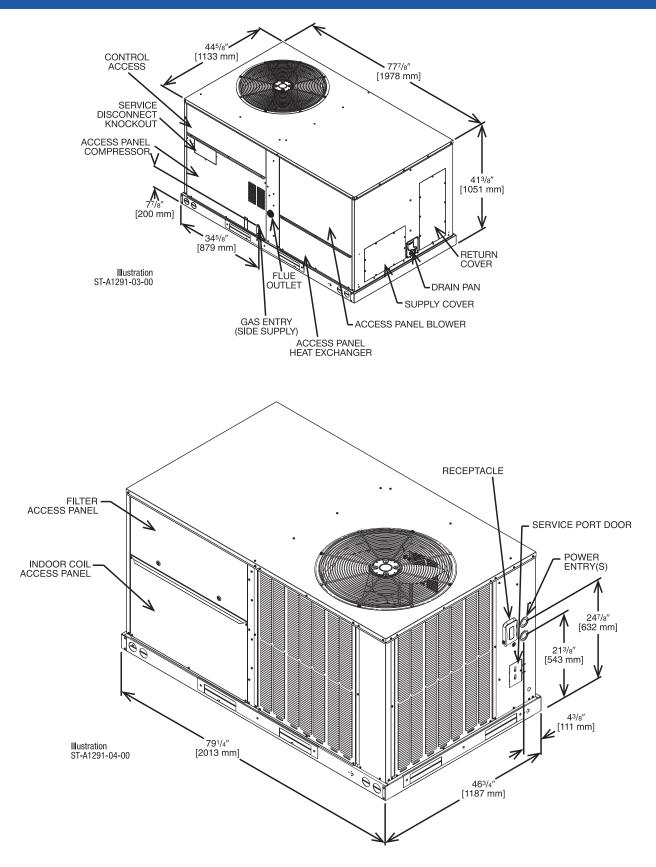
		EL	ECTRICAL DATA –	RGECYC SERIES		
		036AJT07 036AJT10	036ACT07 036ACT10	036ACU07 036ACU10	036ADT07 036ADT10	036ADU07 036ADU10
	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506
	Volts	208/230	208/230	208/230	460	460
	Phase	1	3	3	3	3
	Hz	60	60	60	60	60
	Minimum Circuit Ampacity	28/28	22/22	28/28	11	12
nation	Minimum Circuit Ampacity with Power Exhaust	31/31	25/25	31/31	13	14
Unit Information	Minimum Overcurrent Protection Device Size	35/35	25/25	35/35	15	15
Uni	Minimum Overcurrent Protection Device Size with Power Exhaust	35/35	30/30	35/35	15	15
	Maximum Overcurrent Protection Device Size	40/40	30/30	35/35	15	15
	Maximum Overcurrent Protection Device Size with Power Exhaust	45/45	30/30	40/40	15	15
tor	No.	1	1	1	1	1
r Mo	Volts	208/230	208/230	208/230	460	460
Compressor Motor	Phase	1	3	3	3	3
npre	Amps (RLA)	14.6	9.9	9.9	4.8	4.8
Cor	Amps (LRA)	90.0	82.0	82.0	44.3	44.3
L	No.	1	1	1	1	1
loto	Volts	208/230	208/230	208/230	460	460
er N	Phase	1	1	1	1	1
lens	HP	1/3	1/3	1/3	1/3	1/3
Condenser Motor	Amps (FLA, each)	3.5	3.5	3.5	1.6	1.6
	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A
	No.	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460
Evaporator Fan	Phase	1	1	1	1	1
pora	HP	3/4	3/4	1.5	3/4	1
Eva	Amps (FLA, each)	6	6	11.5	2.7	3.5
	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A

Г

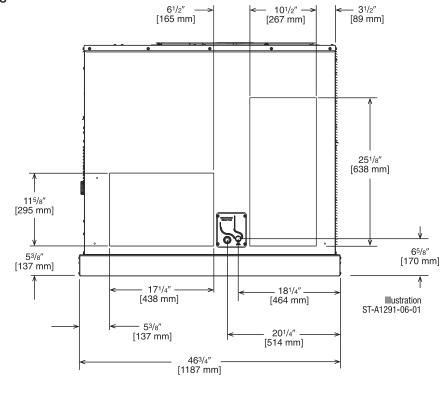
		EL	ECTRICAL DATA –	RGECYC SERIES		
		048AJT07 048AJT12	048ACT07 048ACT12	048ACU07 048ACU12	048ADT07 048ADT12	048ADU07 048ADU12
	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506
	Volts	208/230	208/230	208/230	460	460
	Phase	1	3	3	3	3
	Hz	60	60	60	60	60
	Minimum Circuit Ampacity	35/35	27/27	32/32	14	15
nation	Minimum Circuit Ampacity with Power Exhaust	38/38	30/30	35/35	16	17
Unit Information	Minimum Overcurrent Protection Device Size	40/40	30/30	35/35	20	20
Uni	Minimum Overcurrent Protection Device Size with Power Exhaust	45/45	35/35	40/40	20	20
	Maximum Overcurrent Protection Device Size	50/50	35/35	40/40	20	20
	Maximum Overcurrent Protection Device Size with Power Exhaust	50/50	40/40	45/45	20	20
Compressor Motor	No.	1	1	1	1	1
Ē	Volts	208/230	208/230	208/230	460	460
SSOI	Phase	1	3	3	3	3
)pre	Amps (RLA)	18.3	11.9	11.9	6.8	6.8
5	Amps (LRA)	138	112	112	61.8	61.8
	No.	1	1	1	1	1
	Volts	208/230	208/230	208/230	460	460
er M	Phase	1	1	1	1	1
ens	HP	1/2	1/2	1/2	1/2	1/2
Condenser Motor	Amps (FLA, each)	5.3	5.3	5.3	2.3	2.3
5	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A
	No.	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460
đ	Phase	1	1	1	1	1
Evaporator Fan	HP	3/4	3/4	1-1/2	3/4	1
Eva	Amps (FLA, each)	6	6	11.5	2.7	3.5
	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A

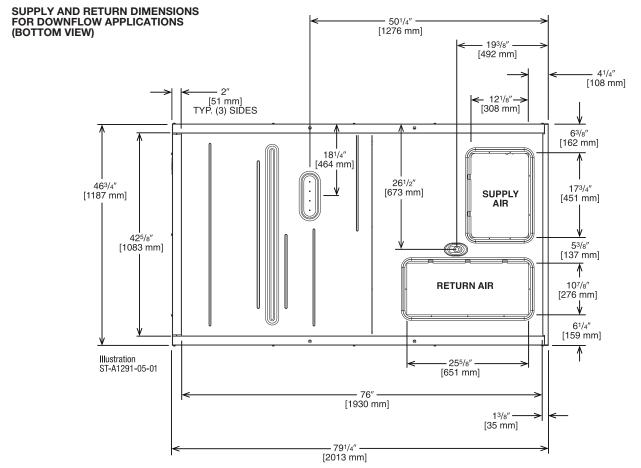
		ELI	ECTRICAL DATA –	RGECYC SERIES		
		048AJT07 048AJT12	048ACT07 048ACT12	048ACU07 048ACU12	048ADT07 048ADT12	048ADU07 048ADU12
				with HUMIDIDRY		
	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506
	Volts	208/230	208/230	208/230	460	460
	Phase	1	3	3	3	3
	Hz	60	60	60	60	60
Γ	Minimum Circuit Ampacity	35/35	27/27	32/32	14	15
nation	Minimum Circuit Ampacity with Power Exhaust	38/38	30/30	35/35	16	17
Unit Information	Minimum Overcurrent Protection Device Size	40/40	30/30	35/35	20	20
Ē	Minimum Overcurrent Protection Device Size with Power Exhaust	45/45	35/35	40/40	20	20
	Maximum Overcurrent Protection Device Size	50/50	35/35	40/40	20	20
	Maximum Overcurrent Protection Device Size with Power Exhaust	50/50	40/40	45/45	20	20
Compressor Motor	No.	1	1	1	1	1
ž	Volts	208/230	208/230	208/230	460	460
SS	Phase	1	3	3	3	3
npre	Amps (RLA)	18.3	11.9	11.9	6.8	6.8
5	Amps (LRA)	138	112	112	61.8	61.8
_	No.	1	1	1	1	1
	Volts	208/230	208/230	208/230	460	460
er	Phase	1	1	1	1	1
GUS	HP	1/2	1/2	1/2	1/2	1/2
Condenser Motor	Amps (FLA, each)	5.3	5.3	5.3	2.3	2.3
	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A
	No.	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460
ē	Phase	1	1	1	1	1
Evaporator Fan	HP	3/4	3/4	1-1/2	3/4	1
EVa	Amps (FLA, each)	6	6	11.5	2.7	3.5
F	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A

		EL	ECTRICAL DATA –	RGECYC SERIES		
		060AJT07 060AJT12	060ACT07 060ACT12	060ACU07 060ACU12	060ADT07 060ADT12	060ADU07 060ADU12
	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506
	Volts	208/230	208/230	208/230	460	460
	Phase	1	3	3	3	3
	Hz	60	60	60	60	60
	Minimum Circuit Ampacity	41/41	31/31	35/35	14	14
nation	Minimum Circuit Ampacity with Power Exhaust	44/44	34/34	38/38	16	16
Unit Information	Minimum Overcurrent Protection Device Size	50/50	35/35	40/40	20	20
Uni	Minimum Overcurrent Protection Device Size with Power Exhaust	50/50	40/40	45/45	20	20
	Maximum Overcurrent Protection Device Size	60/60	40/40	45/45	20	20
	Maximum Overcurrent Protection Device Size with Power Exhaust	60/60	45/45	50/50	20	20
Compressor Motor	No.	1	1	1	1	1
r Mo	Volts	208/230	208/230	208/230	460	460
SSO	Phase	1	3	3	3	3
npre	Amps (RLA)	22.3	14	14	6.3	6.3
Cor	Amps (LRA)	149	150	150	58	58
	No.	1	1	1	1	1
loto	Volts	208/230	208/230	208/230	460	460
Condenser Motor	Phase	1	1	1	1	1
ens	HP	1/2	1/2	1/2	1/2	1/2
ond	Amps (FLA, each)	5.3	5.3	5.3	2.3	2.3
3	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A
	No.	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460
Itor	Phase	1	1	1	1	1
Evaporator Fan	HP	1	1	1-1/2	1	1-1/5
Eva	Amps (FLA, each)	7.6	7.6	11.5	3.5	3.7
	Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A

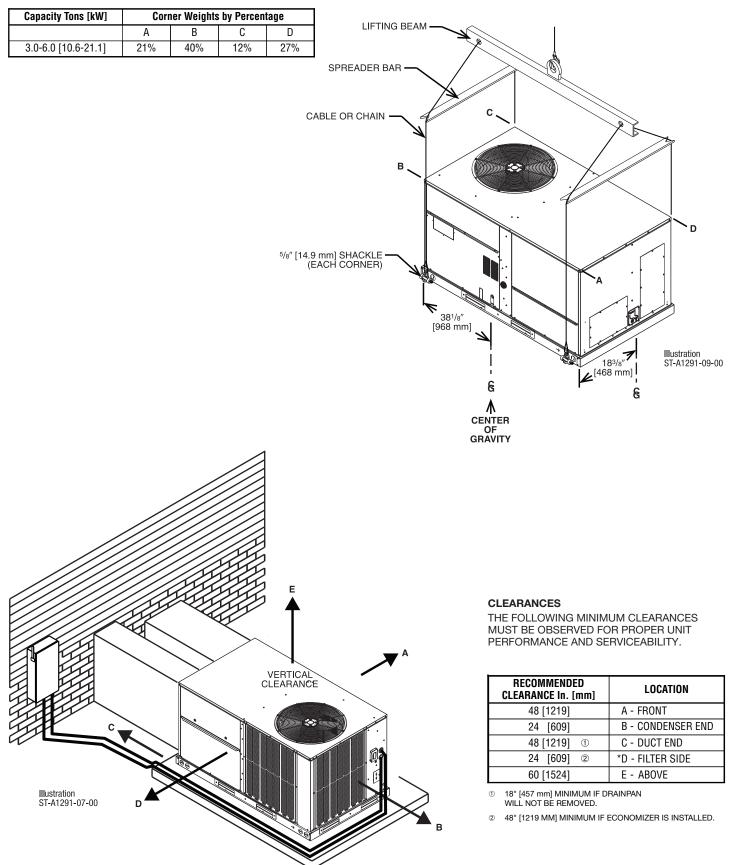

	EL	ECTRICAL DATA –	RGECYC SERIES		
	060AJT07 060AJT12	060ACT07 060ACT12	060ACU07 060ACU12	060ADT07 060ADT12	060ADU07 060ADU12
			with HUMIDIDRY		
Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506
Volts	208/230	208/230	208/230	460	460
Phase	1	3	3	3	3
Hz	60	60	60	60	60
Minimum Circuit Ampacity	41/41	31/31	35/35	14	14
Minimum Circuit Ampacity with Power Exhaust	44/44	34/34	38/38	16	16
Minimum Circuit Ampacity with Power Exhaust Minimum Overcurrent Protection Device Size Minimum Overcurrent	50/50	35/35	40/40	20	20
Minimum Overcurrent Protection Device Size with Power Exhaust	50/50	40/40	45/45	20	20
Maximum Overcurrent Protection Device Size	60/60	40/40	45/45	20	20
Maximum Overcurrent Protection Device Size with Power Exhaust	60/60	45/45	50/50	20	20
No. Volts Phase Amps (RLA) Amps (LRA)	1	1	1	1	1
Volts	208/230	208/230	208/230	460	460
Phase	1	3	3	3	3
Amps (RLA)	22.3	14	14	6.3	6.3
Amps (LRA)	149	150	150	58	58
No.	1	1	1	1	1
Volts	208/230	208/230	208/230	460	460
Volts Phase HP Amps (FLA, each)	1	1	1	1	1
HP	1/2	1/2	1/2	1/2	1/2
Amps (FLA, each)	5.3	5.3	5.3	2.3	2.3
Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A
No.	1	1	1	1	1
Volts	208/230	208/230	208/230	460	460
Phase	1	1	1	1	1
HP	1	1	1-1/2	1	1-1/5
Volts Phase HP Amps (FLA, each)	7.6	7.6	11.5	3.5	3.7
Amps (LRA, each)	N/A	N/A	N/A	N/A	N/A

A2L REFRIGERANT INSTALLATION SAFETY DATA


		RGECYB036	RGECYB036 w/HumidiDry	RGECYB048	RGECYB048 w/HumidiDry	RGECYB060	RGECYB060 w/HumidiDry	RGECYB072	RGECYB072 w/HumidiDry
Refrigerant Charge v	Refrigerant Charge weight (oz)		101	67	110	80	105	85	123
Minimum circulation airfl	Minimum circulation airflow, Qmin (cfm)		171	113	186	135	178	144	208
Installed Altitude (Ft. Above Sea Level) Altitude Factor				Minimum T	otal Conditioned	Room Area, T	Amin (Sq. Ft.)		
0	1.000	67	95	63	103	75	98	80	115
1000	1.025	69	97	64	106	77	101	82	118
2000	1.051	71	99	66	108	79	103	84	121
3000	1.078	73	102	68	111	81	106	86	124
4000	1.107	75	105	70	114	83	109	88	128
5000	1.138	77	108	71	117	85	112	91	131
6000	1.170	79	111	73	121	88	115	93	135
6500	1.187	80	112	75	122	89	117	95	137


		RGECYC036	RGECYC036 w/HumidiDry	RGECYC048	RGECYC048 w/HumidiDry	RGECYC060	RGECYC060 w/HumidiDry
Refrigerant Charge w	Refrigerant Charge weight (oz)		106	75	116	81	121
Minimum circulation airflo	Minimum circulation airflow, Qmin (cfm)		353	249	386	269	402
Installed Altitude (Ft. Above Sea Level)	Altitude Adjustment Factor	Minimum Total Conditioned Room Area, TAmin (Sq. Ft.)					
0	1.000	122	195	138	214	149	223
1000	1.025	125	200	142	219	153	229
2000	1.051	128	205	145	225	157	234
3000	1.078	131	211	149	230	161	240
4000	1.107	135	216	153	237	165	247
5000	1.138	138	222	157	243	170	254
6000	1.170	142	229	162	250	175	261
6500	1.187	144	232	164	254	177	265

Russell® By Rheem | RGEC Packaged Gas Electric Units



WEIGHTS

FIELD-INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Economizers				
DDC Economizer with Single Enthalpy (Downflow) MicroMetl Economizer with Honeywell Controller	RXRD-01MCDBM3	100 [45.4]	66 [29.9]	Yes
DDC Economizer with Single Enthalpy (Horizontal) MicroMetl Economizer with Honeywell Controller	RXRD-01MCHBM3	72 [32.7]	69 [31.3]	No
Non-DDC Economizer with No Controls (Downflow) MicroMetl Economizer, Belimo Actuator	RXRD-31MCDAM3	100 [45.4]	66 [29.9]	No
Non-DDC Economizer with Single Enthalpy (Downflow) MicroMetl Economizer with Honeywell Jade Controller	RXRD-01MCDAM3	100 [45.4]	66 [29.9]	Yes
Non-DDC Economizer with Single Enthalpy (Downflow) MicroMetl Economizer with Siemens Controls	RXRD-11MCDAM3	100 [45.4]	66 [29.9]	Yes
Non-DDC Economizer with Single Enthalpy (Downflow) Ruskin Rooftop Systems Economizer with RRS Basic Controller	RXRD-41MCDAM3	100 [45.4]	66 [29.9]	Yes
Non-DDC Economizer with Single Enthalpy (Downflow) Ruskin Rooftop Systems Economizer with Siemens Controls	RXRD-51MCDAM3	100 [45.4]	66 [29.9]	Yes
Non-DDC Economizer with Single Enthalpy (Horizontal) MicroMetl Economizer with Honeywell Jade Controller	RXRD-01MCHAM3	72 [32.7]	69 [31.3]	No
Non-DDC Economizer with Single Enthalpy (Horizontal) MicroMetl Economizer with Siemens Controls	RXRD-11MCHAM3	72 [32.7]	69 [31.3]	No
Non-DDC Economizer with Single Enthalpy (Horizontal) Ruskin Rooftop Systems Economizer with RRS Basic Controller	RXRD-41MCHAM3	72 [32.7]	69 [31.3]	No
Non-DDC Economizer with Single Enthalpy (Horizontal) Ruskin Rooftop Systems Economizer with Siemens Controls	RXRD-51MCHAM3	72 [32.7]	69 [31.3]	No
Economizer Universal DDC Interface Kit	RXRX-DDC01	5 [2.7]	3.5 [1.6]	Yes

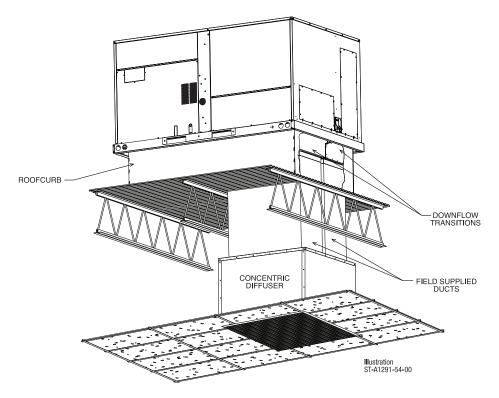
FIELD-INSTALLED ACCESSORY EQUIPMENT (CONTINUED)

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Comfort Alert (1 Phase) DDC	RXRX-AZ03	3 [1.5]	2 [0.9]	Yes
Comfort Alert (1 Phase) Non-DDC	RXRX-AZ04	3 [1.5]	2 [0.9]	Yes
Comfort Alert (3 Phase) DDC	RXRX-AZ01	3 [1.5]	2 [0.9]	Yes
Comfort Alert (3 Phase) Non-DDC	RXRX-AZ02	3 [1.5]	2 [0.9]	Yes
Communication Card, BACnet	RXRX-AY01	1 [0.5]	1 [0.5]	No
Communication Card, LonWorks	RXRX-AY02	1 [0.5]	1 [0.5]	No
Concentric Adapter 3-4 Ton Drop	RXMC-DC01	35 [15.9]	30 [13.6]	No
Concentric Adapter 5-6 Ton Drop	RXMC-DC02	40 [18.2]	35 [15.9]	No
Concentric Diffuser 3-4 Ton Drop	RXRN-AED1800	35 [15.9]	30 [13.6]	No
Concentric Diffuser 5-6 Ton Drop	RXRN-AED2000	35 [15.9]	30 [13.6]	No
Concentric Diffuser 3-4 Ton Flush	RXRN-AEF1800	30 [13.6]	25 [11.3]	No
Concentric Diffuser 5-6 Ton Flush	RXRN-AEF2000	30 [13.6]	25 [11.3]	No
Convenience Outlet, Nonpowered	RXRX-BN01	2 [1.0]	1.5 [0.7]	Yes
Dual Enthalpy Kit (for Honeywell Jade™)	RXRX-BV01	1 [0.5]	1 [0.5]	No
Dual Enthalpy Kit DDC (for Honeywell DDC)	RXRX-BV02	1 [0.5]	1 [0.5]	No
Dual Enthalpy, Temperature and Humidity Sensor (for Ruskin Basic Controller)	PD955977	1 [0.5]	1 [0.5]	No
Dual Enthalpy, Temperature and Humidity Sensor (for Siemens)	PD555460	1 [0.5]	1 [0.5]	No
Flue Diverter (RGEC 75K, 100K & 120K)	RXRX-DEG03	5 [2.3]	4 [1.8]	No
Freeze Stat Kit	RXRX-AM05	2 [1.0]	1.5 [0.7]	Yes
Fresh Air Damper, Manual	RXRF-ACA1	22 [10.0]	18 [8.2]	No
Fresh Air Damper, Motorized	RXRF-ACB1	53 [24.0]	43 [19.5]	No
Fresh Air Damper, Motorized (DDC)	RXRF-ACC1	53 [24.0]	43 [19.5]	No
Low-Ambient Control Kit	RXRZ-A04	4 [1.8]	3 [1.4]	Yes
LP Kit (RGEC 75K, 120K)	RXGJ-FP40	2 [1.0]	1 [0.5]	No
LP Kit (RGEC 100K)	RXGJ-FP41	2 [1.0]	1 [0.5]	No
MERV 8 Filter	RXMF-M08A21616	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A21616	2 [0.9]	1 [0.45]	No
Outdoor Coil Louver Kit	RXRX-ADD04C	30 [13.6]	25 [11.3]	Yes
Power Exhaust (230V) Vertical MicroMetl	RXRX-CCF02C	24 [10.9]	21 [9.5]	No
Power Exhaust (460V) Vertical MicroMeti	RXRX-CCF02D	20 [9.1]	17 [7.7]	No
Power Exhaust (2007) Voltata MicroMeth	RXRX-CCF03C	42 [19.1]	39 [17.7]	No
Power Exhaust (460V) Horizontal MicroMet	RXRX-CCF03D	42 [19.1]	39 [17.7]	No
Power Exhaust (230V) Vertical Ruskin Rooftop Systems	RXRX-RCF02C	24 [10.9]	21 [9.5]	No
Power Exhaust (2007) Vertical Ruskin Roottop Systems	RXRX-RCF02D	24 [10.9]	17 [7.7]	No
Power Exhaust (4007) Vertical Ruskin Rooftop Systems	RXRX-RCF02Y	20 [9.1]	17 [7.7]	No
Power Exhaust (230V) Horizontal Ruskin Rooftop Systems	RXRX-RCF03C	42 [19.1]	39 [17.7]	No
Power Exhaust (2007) Horizontal Ruskin Rooftop Systems	RXRX-RCF03D			No
Power Exhaust (400V) Horizontal Ruskin Rootop Systems		42 [19.1]	39 [17.7] 39 [17.7]	NO
	RXRX-RCF03Y	42 [19.1]		NO
Roofcurb, 14"	RXKG-DCC14 RXKG-DC14	94 [42.6]	90 [40.8]	NO
Roofcurb, 14" Welded		94 [42.6]	90 [40.8]	
Roofcurb, 24"	RXKG-DCC24	124 [56.2]	120 [54.4]	No
Roofcurb, 24" Welded	RXKG-DC24	124 [56.2]	120 [54.4]	No
Roofcurb Adapter	RXRX-DCCAE	159 [72.1]	145 [65.8]	No
Sensor, Carbon Dioxide (Wall Mount)	RXRX-AR02	1 [0.5]	1 [0.5]	No
Sensor, Room Humidity	RHC-ZNS4	1 [0.5]	1 [0.5]	No
Sensor, Room Temperature and Relative Humidity	RHC-ZNS5	1 [0.5]	1 [0.5]	No
Smoke Detector, Return (Field kit)	RXRX-BS01	7 [3.2]	6 [2.7]	No
Smoke Detector, Return/ Supply (Field kit)	RXRX-BS02	5 [2.3]	4 [1.8]	No
Unfused Service Disconnect	RXRX-BP01	10 [4.5]	9 [4.1]	Yes
UV-C Kit 208V/230V	RXRX-UVC22C	8 [3.6]	6 [2.7]	No
UV-C Transformer 460V/575V	RXRX-UVCTC	12 [5.4]	11 [5.0]	No

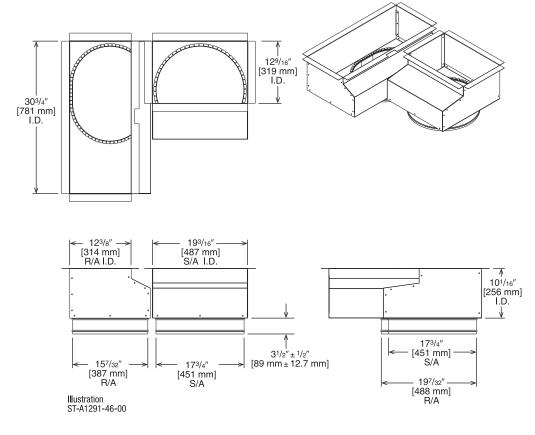
COMMUNICATION CARDS

BACnet COMMUNICATION CARD

RXRX-AY01

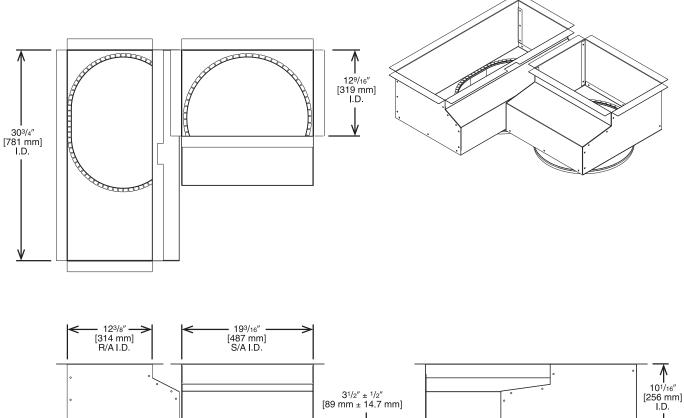

The field-installed BACnet Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

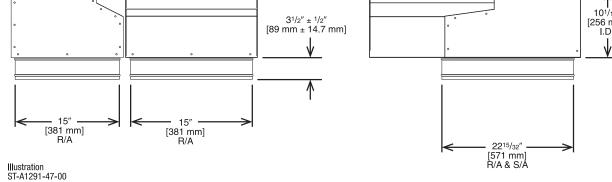
LonWorks COMMUNICATION CARD RXRX-AY02


The field-installed LonWorks Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

DOWNFLOW TRANSITION DRAWINGS

RXMC-DC01 — Concentric Adapter 3 & 4 Ton Drop

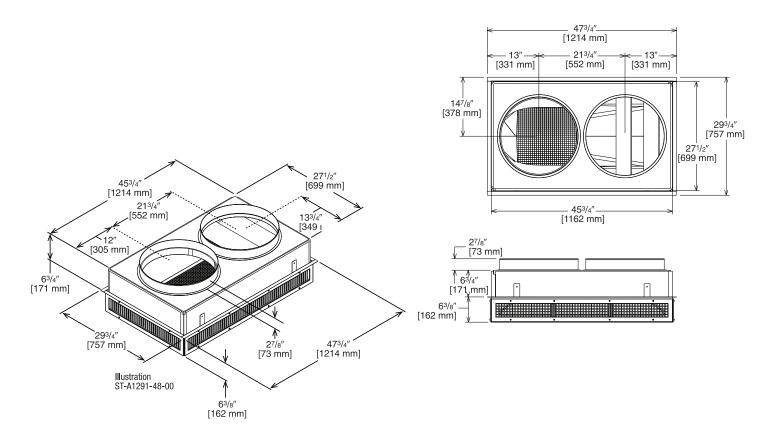

Used with RXRN-AEF1800 or RXRN-AED1800 Concentric Diffusers



DOWNFLOW TRANSITION DRAWINGS

RXMC-DC02—Concentric Adapter 5 & 6 Ton Drop

Used with RXRN-AEF2000 or RXRN-AED2000 Concentric Diffusers



CONCENTRIC DIFFUSER 3 & 4 TON DROP

RXRN-AED1800

For Use With Downflow Transition (RXMC-DC01) and 18" [457 mm] Round Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate
- Built-in anti-sweat gasket
- Molded fiberglass supports
- Built-in hanging supports
- Diffuser box constructed of sheet metal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner

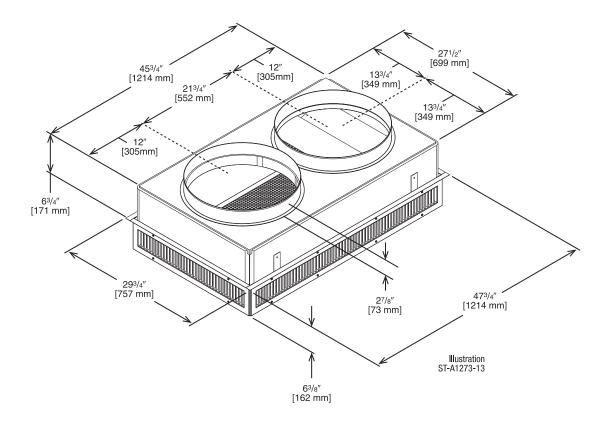
ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
RXRN-AED1800	1000 [472]	9-23 [2.7-7.0]	391 [2.0]	12
	1200 [566]	10-24 [3.0-7.3]	469 [2.4]	15
	1400 [661]	12-26 [3.7-7.9]	547 [2.8]	19
	1600 [755]	13-28 [4.0-8.5]	625 [3.2]	21
	1800 [849]	15-30 [4.6-9.1]	703 [3.6]	26
	2000 [944]	17-32 [5.2-9.8]	781 [4.0]	30
	2400 [1133]	19-34 [5.8-10.4]	859 [5.8]	32

NOTES: ① All data is based on the air diffusion council guidelines.

2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER 5 & 6 TON DROP

RXRN-AED2000

For Use With Downflow Transition (RXMC-DC02) and 20" [508 mm] Round Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate
- Built-in anti-sweat gasket
- Molded fiberglass supports
- Built-in hanging supports
- Diffuser box constructed of sheet metal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner

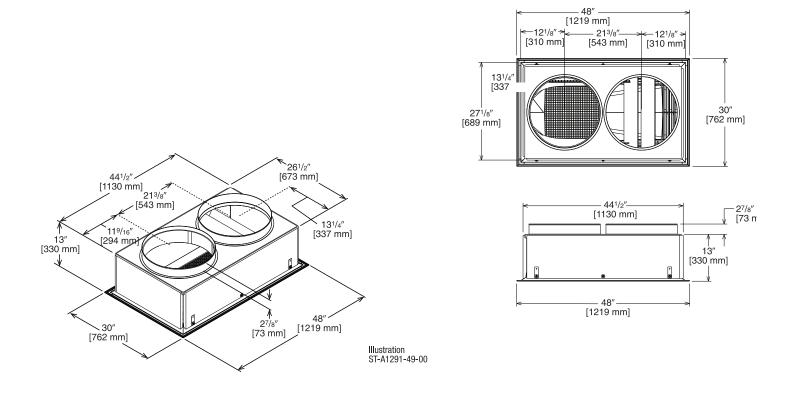
ENGINEERING DATA^①

Model No.	Flow Rate CFM [L/s]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1222]	22-39 [6.7-11.9]	669 [3.4]	32
RXRN-AED2000	2800 [1316]	23-40 [7.1-12.2]	720 [3.7]	38
	3000 [1410]	25-42 [7.6-12.8]	772 [3.9]	40
	3200 [1504]	26-43 [7.9-13.1]	823 [4.2]	41
	3400 [1598]	27-45 [8.2-13.7]	874 [4.4]	42

NOTES: 1) All data is based on the air diffusion council guidelines.

② Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER 3 & 4 TON FLUSH

RXRN-AEF1800

For Use With Downflow Transition (RXMC-DC01) 18" [457 mm] Round Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate
- Built-in anti-sweat gasket
- Molded fiberglass supports
- Built-in hanging supports
- Diffuser box constructed of sheet metal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner

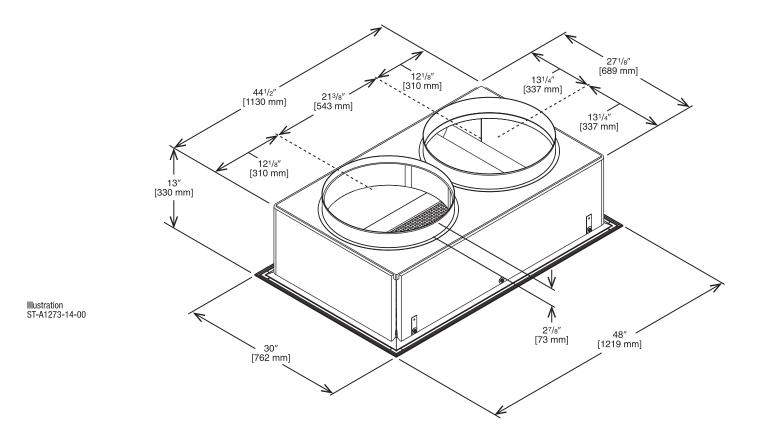
ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	1000 [472]	9-12 [2.7-3.7]	663 [3.4]	20
-	1200 [566]	12-16 [3.7-4.9]	714 [3.6]	25
RXRN-AEF1800	1400 [661]	15-20 [4.6-6.1]	765 [3.9]	30
	1600 [755]	17-23 [5.2-7]	816 [4.1]	30
	1800 [849]	20-26 [6.1-7.9]	867 [4.4]	35
	2000 [944]	22-29 [6.7-8.8]	918 [4.7]	40
	2400 [1133]	25-32 [7.6-9.8]	969 [4.9]	45

 $\operatorname{\textbf{NOTES:}}$ All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER 5 & 6 TON FLUSH

RXRN-AEF2000

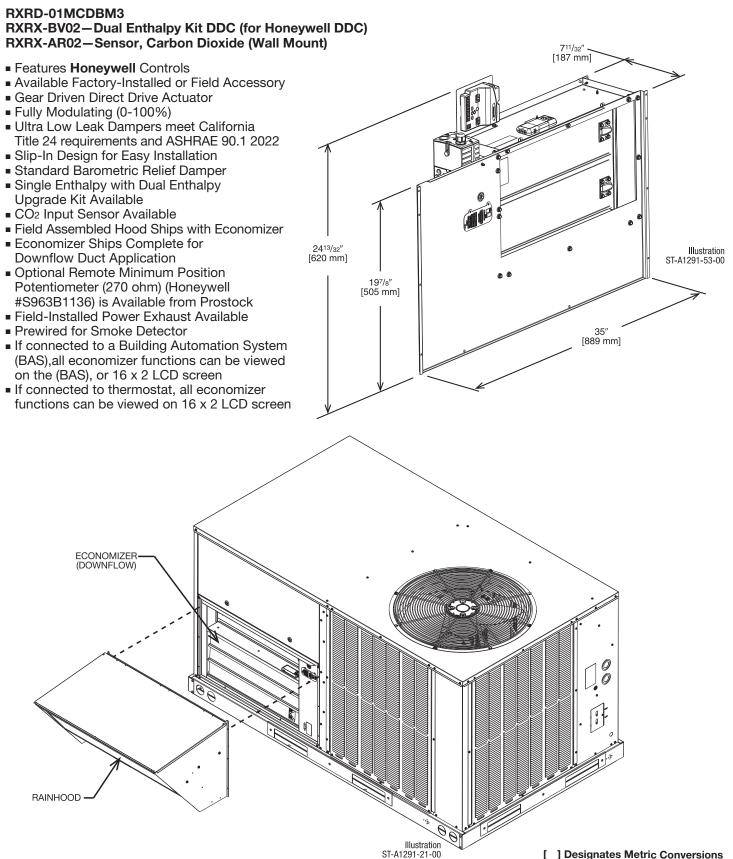
For Use With Downflow Transition (RXMC-DC02) 20" [508 mm] Round Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate
- Built-in anti-sweat gasket
- Molded fiberglass supports
- Built-in hanging supports
- Diffuser box constructed of sheet metal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner

ENGINEERING DATA^①

Model No.	Flow Rate CFM [L/s]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1222]	17-24 [5.2-7.3]	663 [3.4]	30
	2800 [1316]	18-28 [5.5-8.5]	714 [3.6]	35
RXRN-AEF2000	3000 [1410]	20-30 [6.1-9.1]	765 [3.9]	35
-	3200 [1504]	22-33 [6.7-10.1]	816 [4.1]	40
	3400 [1598]	23-37 [7-11.3]	867 [4.4]	40

NOTES: ① All data is based on the air diffusion council guidelines.


⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

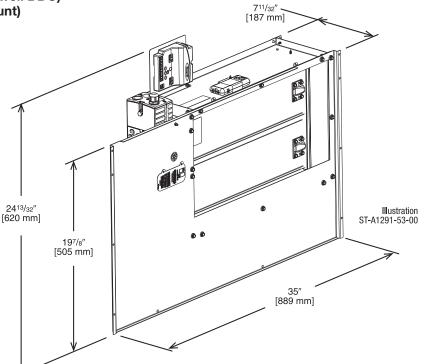
④ Actual noise levels may vary due to duct design and do not include transmitted unit noise. Adequate duct attenuation must be provided to reduce sound output from the unit.

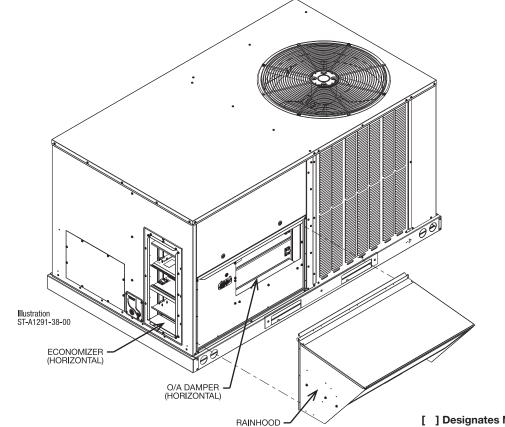
DDC ECONOMIZER WITH SINGLE ENTHALPY (DOWNFLOW) MICROMETL ECONOMIZER WITH HONEYWELL CONTROLLER Eastony or Eigld-Installed

Factory or Field-Installed

DDC ECONOMIZER WITH SINGLE ENTHALPY (HORIZONTAL) MICROMETL ECONOMIZER WITH HONEYWELL CONTROLLER

Field-Installed Only

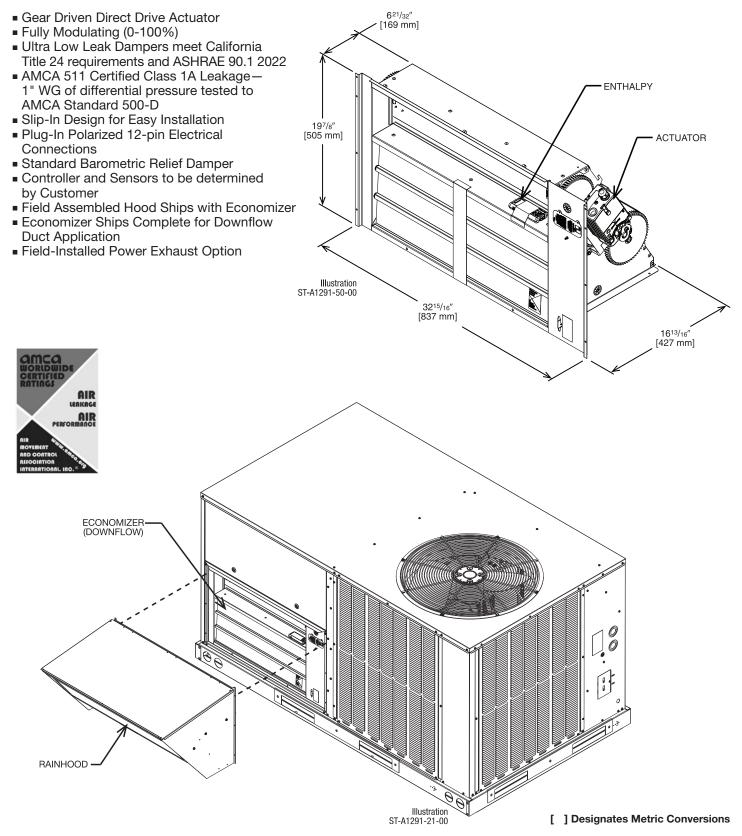

RXRD-01MCHBM3 RXRX-BV02—Dual Enthalpy Kit DDC (for Honeywell DDC) RXRX-AR02—Sensor, Carbon Dioxide (Wall Mount)


- Features Honeywell Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Ultra Low Leak Dampers meet California Title 24 requirements and ASHRAE 90.1 2022
- Slip-In Design for Easy Installation
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available

AIR

AIR

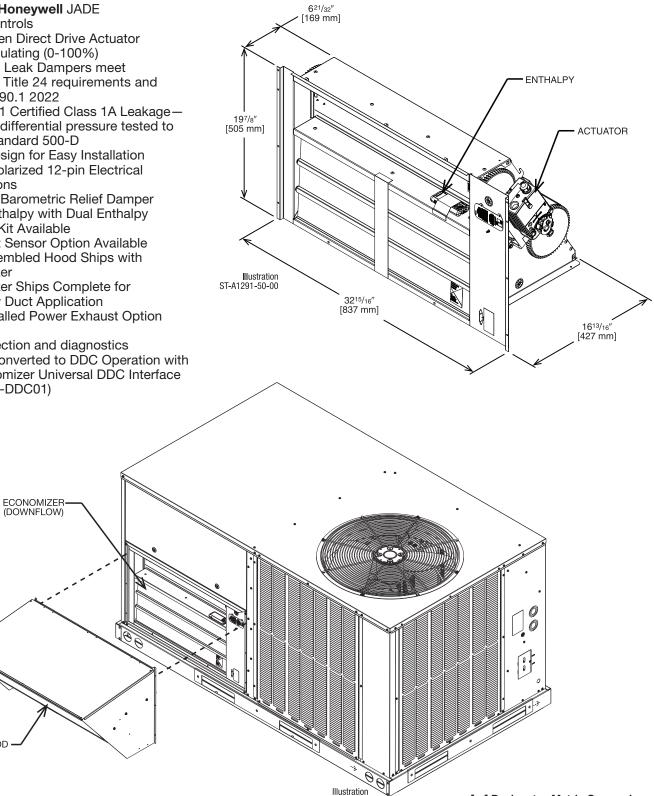
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is Available from Prostock
- Field-Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS), or 16 x 2 LCD screen
- If connected to a thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



NON-DDC ECONOMIZER WITH NO CONTROLS (DOWNFLOW) MICROMETL ECONOMIZER, BELIMO ACTUATOR

Field-Installed Only

RXRD-31MCDAM3—Single Enthalpy (Outdoor) RXRX-ACD01—Wire Harness for Non-DDC Generic Economizers



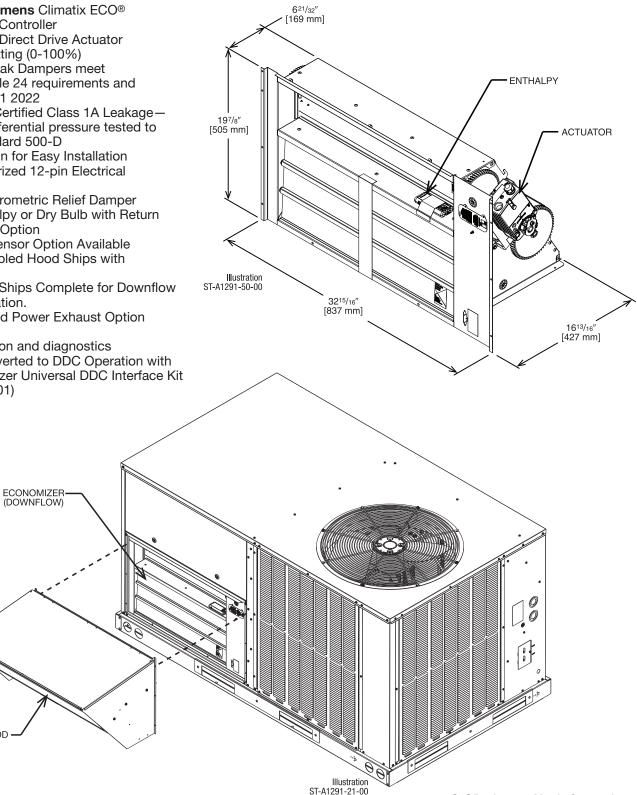
NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (DOWNFLOW) MICROMETL ECONOMIZER WITH HONEYWELL JADE CONTROLLER

Factory or Field-Installed

RXRD-01MCDAM3 RXRX-BV01-Dual Enthalpy Kit (for Honeywell Jade) RXRX-AR02-Sensor, Carbon Dioxide (Wall Mount)

- Features Honeywell JADE **Digital Controls**
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Ultra Low Leak Dampers meet California Title 24 requirements and ASHRAE 90.1 2022
- AMCA 511 Certified Class 1A Leakage— 1" WG of differential pressure tested to AMCA Standard 500-D
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin Electrical Connections
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Option Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for **Downflow Duct Application**
- Field-Installed Power Exhaust Option Available
- Fault detection and diagnostics
- Can be Converted to DDC Operation with the Economizer Universal DDC Interface Kit (RXRX-DDC01)

ST-A1291-21-00


RAINHOOD

NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (DOWNFLOW) **MICROMETL ECONOMIZER WITH SIEMENS CONTROLS**

Factory or Field-Installed

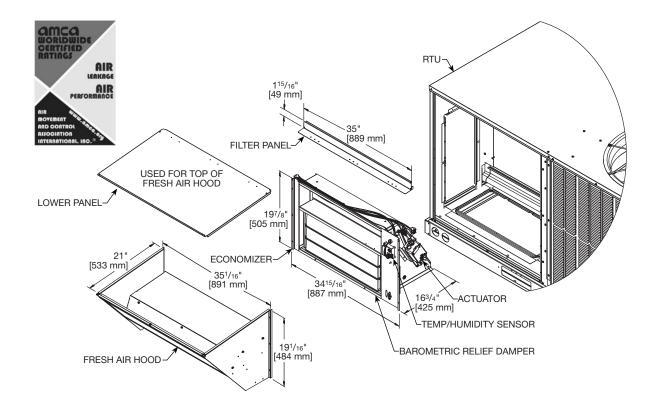
RXRD-11MCDAM3 PD555460—Temperature and Humidity Sensor for Dual Enthalpy (for Siemens Controllers Only) RXRX-AR02—Sensor, Carbon Dioxide (Wall Mount)

- Features Siemens Climatix ECO® Economizer Controller
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Ultra Low Leak Dampers meet California Title 24 requirements and ASHRAE 90.1 2022
- AMCA 511 Certified Class 1A Leakage— 1" WG of differential pressure tested to AMCA Standard 500-D
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin Electrical Connections
- Standard Barometric Relief Damper
- Single Enthalpy or Dry Bulb with Return Air Enthalpy Option
- CO2 Input Sensor Option Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Field-Installed Power Exhaust Option Available
- Fault detection and diagnostics
- Can be Converted to DDC Operation with the Economizer Universal DDC Interface Kit (RXRX-DDC01)

[] Designates Metric Conversions

RAINHOOD

NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (DOWNFLOW) RUSKIN ROOFTOP SYSTEM ECONOMIZER WITH RRS BASIC CONTROLLER Factory or Field-Installed

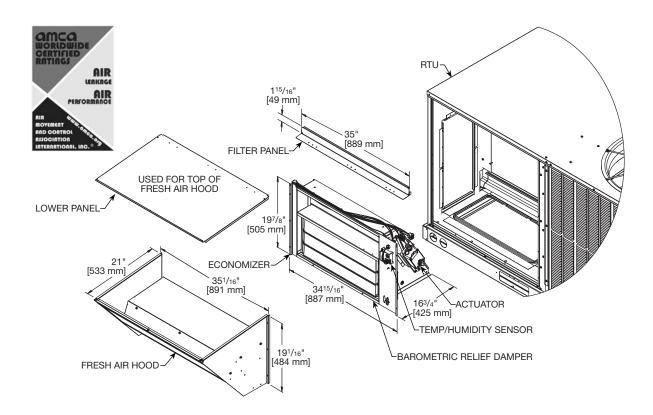

RXRD-41MCDAM3

PD955977—Temperature and Humidity Sensor for Dual Enthalpy (for Ruskin Basic Controller Only) RXRX-AR02—Sensor, Carbon Dioxide (Wall Mount)

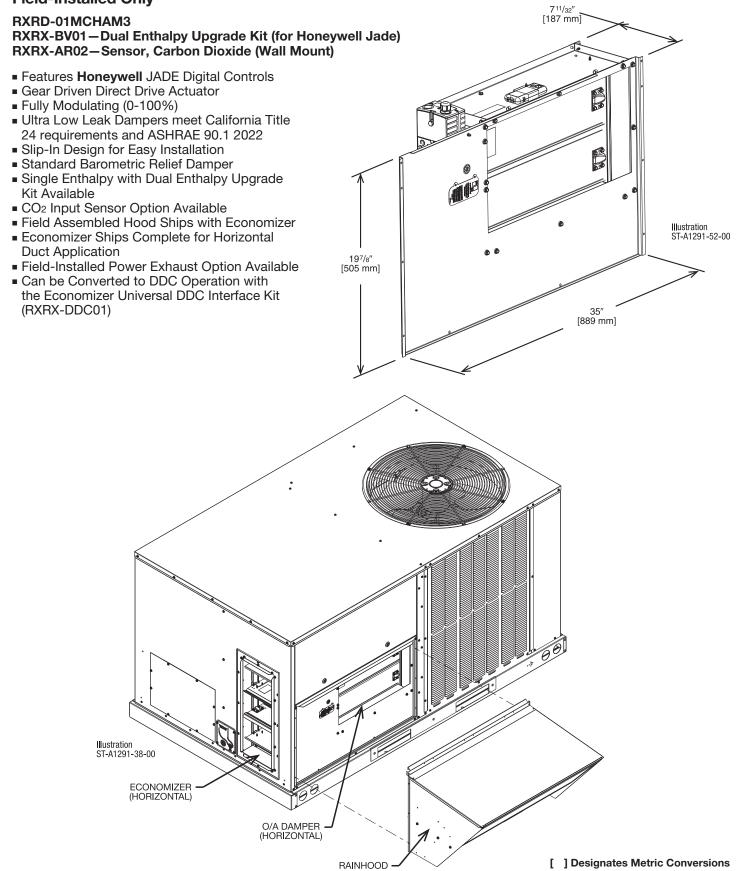
These ultra-low leak economizer dampers meet the following minimum construction standards:

- 1. Frame shall be 14 to 24 gauge galvanized steel channel.
- 2. Damper blades are galvanized steel airfoil shaped, double skin construction of 14 gauge [2.0] equivalent thickness, 6" [152 mm] wide.
- Blade edge seals shall be Ruskiprene[™] type or equivalent suitable for -72°F [-60°C] to +275°F [+135°C] mechanically locked into the blade edge. Adhesive or clip-on type seals are unacceptable.
- 4. Jamb seals shall be flexible metal, compression type to prevent leakage between blade end and damper frame. Blade end overlapping frame is unacceptable.
- 5. Bearings shall be stainless steel or nylon bushing.
- 6. Axles shall be hexagonal positively locked into the damper blade.
- 7. Drive mechanism shall be concealed out of airstream to reduce pressure drop and noise.

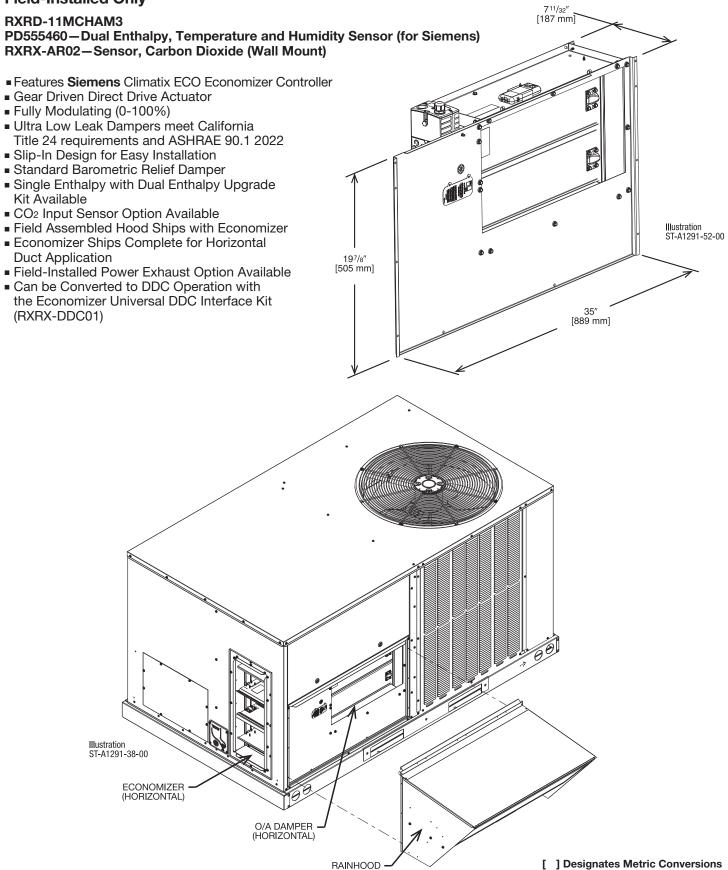
- 8. Economizer damper is tested and rated based upon AMCA Publication 500-D.
- RRS controls feature the Basic economizer controller with 24V actuator. Controls capable of Economizer Fault Detection and Diagnostics for code compliance.
- 10. Damper shall meet the leakage requirements of the International Energy Conservation Code by leaking less than 3 cfm/sq. ft. at 1" of static pressure and shall be AMCA licensed as a class 1A damper. Complies with reliability and performance requirements as specified by the California Energy Commission's Title 24 Standard and ASHRAE 90.1 2022. Economizer dampers shall be Ruskin Rooftop Systems ECD60 model.
- 11. Can be Converted to DDC Operation with the Economizer Universal DDC Interface Kit (RXRX-DDC01).


NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (DOWNFLOW) RUSKIN ROOFTOP SYSTEMS ECONOMIZER WITH SIEMENS CONTROLS Factory or Field-Installed

RXRD-51MCDAM3 PD555460—Dual Enthalpy, Temperature and Humidity Sensor (for Siemens) RXRX-AR02—Sensor, Carbon Dioxide (Wall Mount)

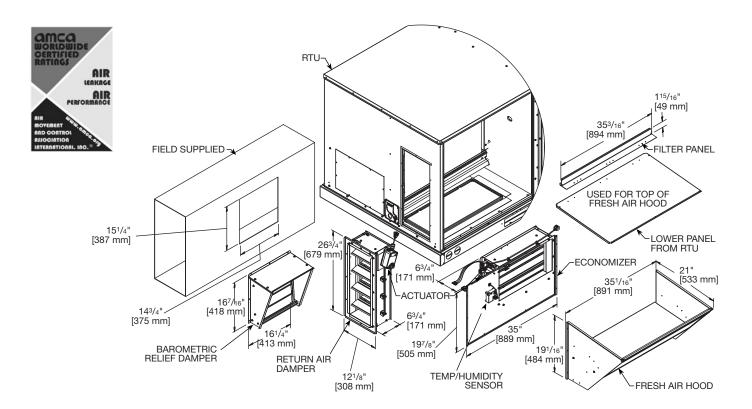

These ultra-low leak economizer dampers meet the following minimum construction standards:

- 1. Frame shall be 14 to 24 gauge galvanized steel channel.
- 2. Damper blades are galvanized steel airfoil shaped, double skin construction of 14 gauge [2.0] equivalent thickness, 6" [152 mm] wide.
- Blade edge seals shall be Ruskiprene type or equivalent suitable for -72°F [-60°C] to +275°F [+135°C] mechanically locked into the blade edge. Adhesive or clip-on type seals are unacceptable.
- 4. Jamb seals shall be flexible metal, compression type to prevent leakage between blade end and damper frame. Blade end overlapping frame is unacceptable.
- 5. Bearings shall be stainless steel or nylon bushing.
- 6. Axles shall be hexagonal positively locked into the damper blade.
- 7. Drive mechanism shall be concealed out of airstream to reduce pressure drop and noise.


- 8. Economizer damper is tested and rated based upon AMCA Publication 500-D.
- Controls feature the Siemens controller and actuator. Controls capable of Economizer Fault Detection and Diagnostics for code compliance.
- 10. Damper shall meet the leakage requirements of the International Energy Conservation Code by leaking less than 3 cfm/sq. ft. at 1" of static pressure and shall be AMCA licensed as a class 1A damper. Complies with reliability and performance requirements as specified by the California Energy Commission's Title 24 Standard and ASHRAE 90.1 2022. Economizer dampers shall be Ruskin Rooftop Systems ECD60 model.
- 11. Can be Converted to DDC Operation with the Economizer Universal DDC Interface Kit (RXRX-DDC01).

NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (HORIZONTAL) MICROMETL ECONOMIZER WITH HONEYWELL JADE CONTROLLER Field-Installed Only

NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (HORIZONTAL) MICROMETL ECONOMIZER WITH SIEMENS CONTROLS Field-Installed Only


NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (HORIZONTAL) RUSKIN ROOFTOP SYSTEMS ECONOMIZER WITH RRS BASIC CONTROLLER Field-Installed Only

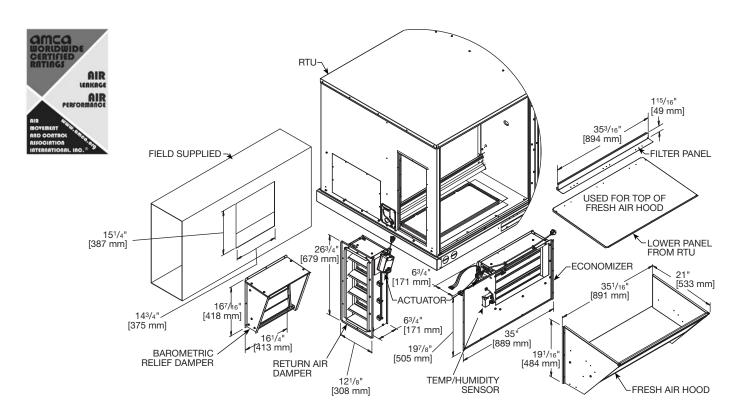
RXRD-41MCHAM3—Single Enthalpy (Outdoor) PD955977—Temperature and Humidity Sensor for Dual Enthalpy (for Ruskin Basic Controller Only) RXRX-AR02—Wall Mounted CO₂ Sensor

These ultra-low leak economizer dampers meet the following minimum construction standards:

- 1. Frame shall be 14 to 24 gauge galvanized steel channel.
- 2. Damper blades are galvanized steel airfoil shaped, double skin construction of 14 gauge [2.0] equivalent thickness, 6" [152 mm] wide.
- Blade edge seals shall be Ruskiprene type or equivalent suitable for -72°F [-60°C] to +275°F [+135°C] mechanically locked into the blade edge. Adhesive or clip-on type seals are unacceptable.
- 4. Jamb seals shall be flexible metal, compression type to prevent leakage between blade end and damper frame. Blade end overlapping frame is unacceptable.
- 5. Bearings shall be stainless steel or nylon bushing.
- 6. Axles shall be hexagonal positively locked into the damper blade.
- 7. Drive mechanism shall be concealed out of airstream to reduce pressure drop and noise.

- 8. Economizer damper is tested and rated based upon AMCA Publication 500-D.
- RRS controls feature the Basic economizer controller with 24V actuator. Controls capable of Economizer Fault Detection and Diagnostics for code compliance.
- 10. Damper shall meet the leakage requirements of the International Energy Conservation Code by leaking less than 3 cfm/sq. ft. at 1" of static pressure and shall be AMCA licensed as a class 1A damper. Complies with reliability and performance requirements as specified by the California Energy Commission's Title 24 Standard and ASHRAE 90.1 2022. Economizer dampers shall be Ruskin Rooftop Systems ECD60 model.
- 11 Can be Converted to DDC Operation with the Economizer Universal DDC Interface Kit (RXRX-DDC01).

[] Designates Metric Conversions

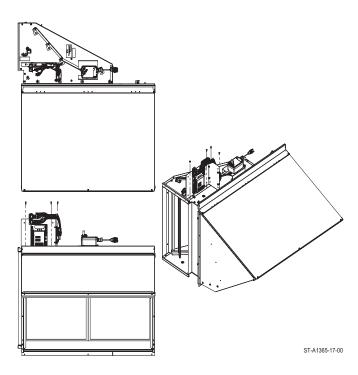

NON-DDC ECONOMIZER WITH SINGLE ENTHALPY (HORIZONTAL) RUSKIN ROOFTOP SYSTEMS ECONOMIZER WITH SIEMENS CONTROLS Field-Installed Only

RXRD-51MCHAM3 PD555460—Dual Enthalpy, Temperature and Humidity Sensor (for Siemens) RXRX-AR02—Sensor, Carbon Dioxide (Wall Mount)

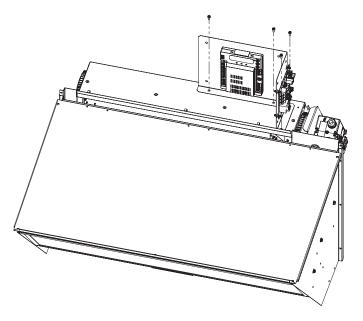
These ultra-low leak economizer dampers meet the following minimum construction standards:

- 1. Frame shall be 14 to 24 gauge galvanized steel channel.
- 2. Damper blades are galvanized steel airfoil shaped, double skin construction of 14 gauge [2.0] equivalent thickness, 6" [152 mm] wide.
- Blade edge seals shall be Ruskiprene type or equivalent suitable for -72°F [-60°C] to +275°F [+135°C] mechanically locked into the blade edge. Adhesive or clip-on type seals are unacceptable.
- Jamb seals shall be flexible metal, compression type to prevent leakage between blade end and damper frame. Blade end overlapping frame is unacceptable.
- 5. Bearings shall be stainless steel or nylon bushing.
- 6. Axles shall be hexagonal positively locked into the damper blade.
- 7. Drive mechanism shall be concealed out of airstream to reduce pressure drop and noise.

- 8. Economizer damper is tested and rated based upon AMCA Publication 500-D.
- 9. Controls feature the Siemens controller and actuator. Controls capable of Economizer Fault Detection and Diagnostics for code compliance.
- 10. Damper shall meet the leakage requirements of the International Energy Conservation Code by leaking less than 3 cfm/sq. ft. at 1" of static pressure and shall be AMCA licensed as a class 1A damper. Complies with reliability and performance requirements as specified by the California Energy Commission's Title 24 Standard and ASHRAE 90.1 2022. Economizer dampers shall be Ruskin Rooftop Systems ECD60 model.
- 11. Can be Converted to DDC Operation with the Economizer Universal DDC Interface Kit (RXRX-DDC01).



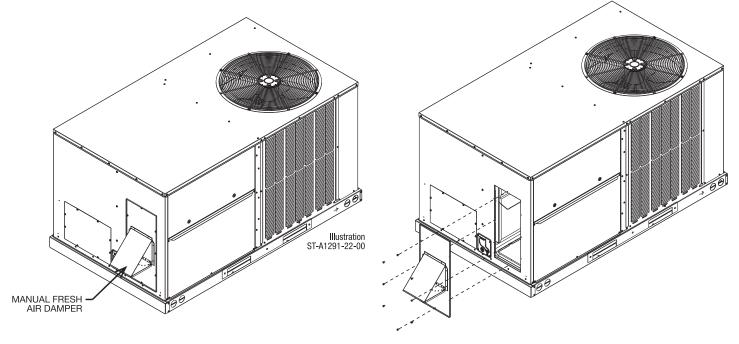
ECONOMIZER UNIVERSAL DDC INTERFACE KIT Factory or Field-Installed

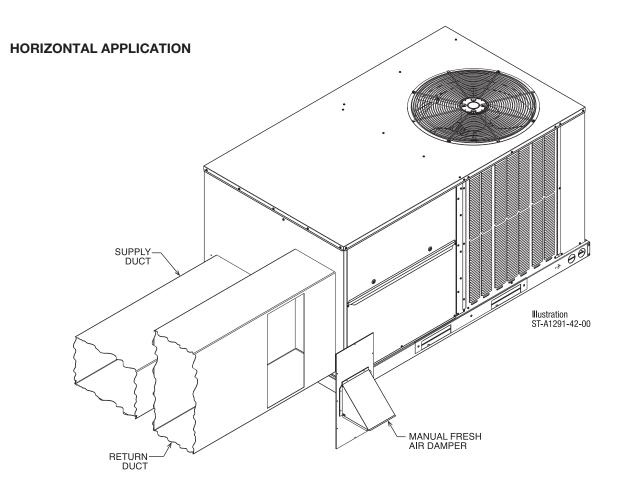

RXRX-DDC01

- Allows any Non-DDC Economizer to be used with a ClearControl DDC model
- Mounts on the Economizer
- Provides Mounting location for Economizer Controller
- Provides wire management for excess wire
- **NOTE**: Older DDC Models, prior to A2L, may require a field update to the ClearControl Software. The minimum version required is 3.15. Models with R-454B refrigerant come with software version 4.0 or higher.

HORIZONTAL FLOW DDC BRACKET SETUP

DOWNFLOW DDC BRACKET SETUP

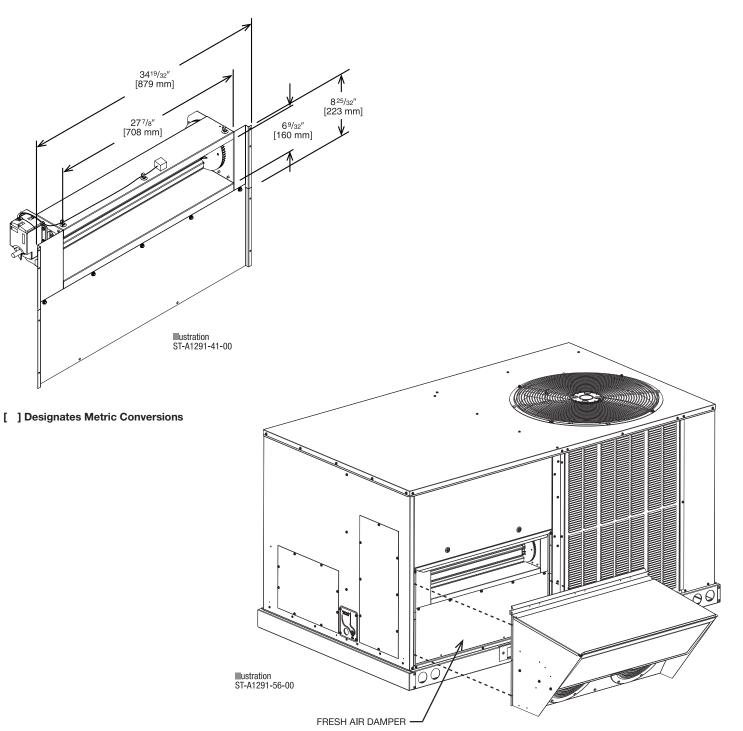

ST-A1365-13-01


FLUE DIVERTER RXRX-DEG03 FLUE DIVERTER HELPS DIRECT PRODUCTS OF COMBUSTION AWAY FROM FRESH AIR INTAKES. FLUE DIVRTER IS COMPATIBLE WITH ALL THREE BTU INPUTS. REFER TO ANSI Z223.1 NATIONAL FUEL GAS CODE FOR APPLICABLE B-VENT DIAMETER (FIELD-SUPPLIED). **B**-VENT SUPPORT BRACKET DETAIL. SHOWN WITH 4-INCH FLUE PIPE. 0 0 A 0 U Illustration ST-A1291-75-00 1. 00

FRESH AIR DAMPER

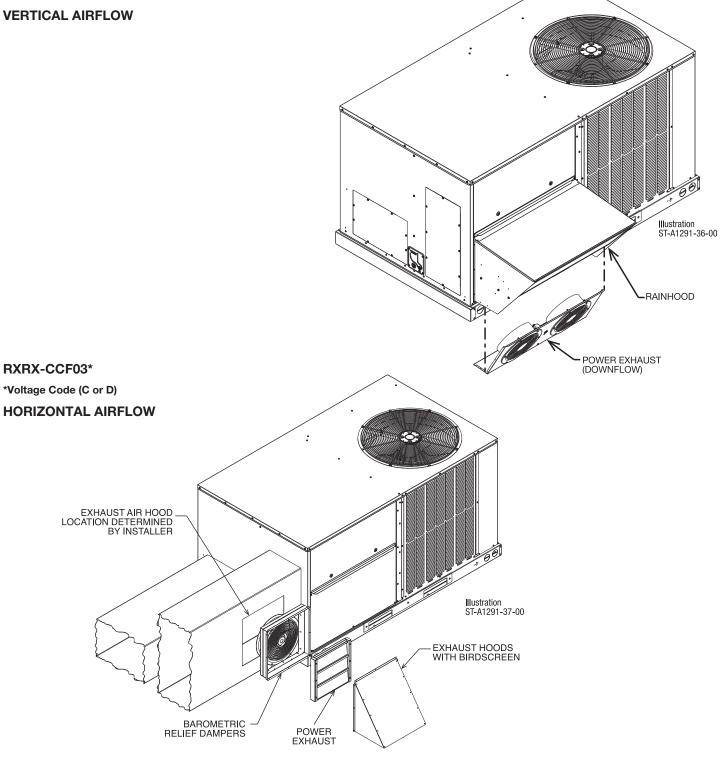
MANUAL DAMPER KIT RXRF-ACA1

DOWNFLOW APPLICATION



FRESH AIR DAMPER

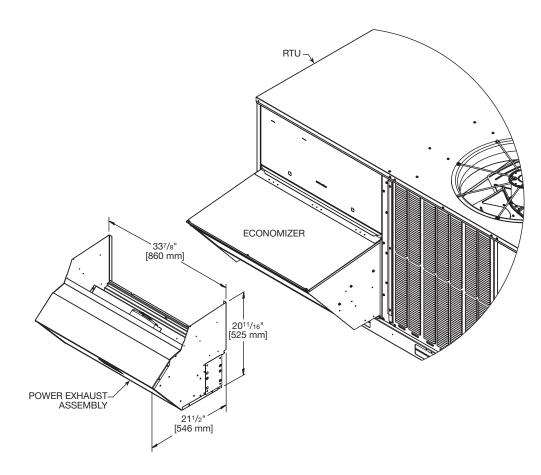
MOTORIZED DAMPER KIT RXRF-ACB1


- Features Siemens Actuator
- Gear Driven Direct Drive Actuator
- Adjustable to 2 positions
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
 Pre-Configured—No Field Adjustments Necessary

POWER EXHAUST KIT FOR ECONOMIZERS

RXRX-CCF02*

*Voltage Code (C or D)

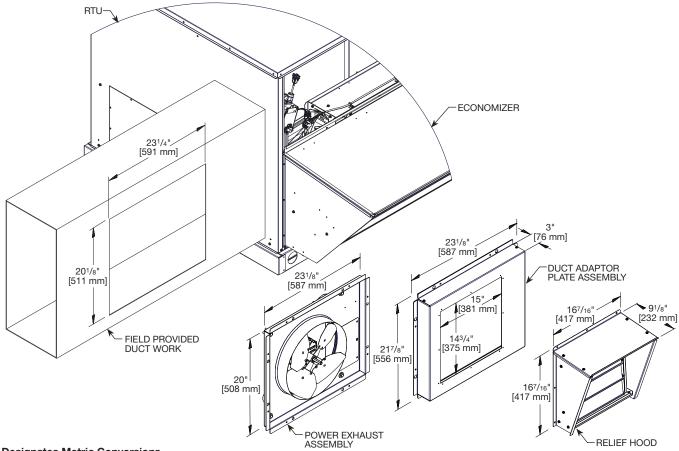

Model No.	No. of Fans	Volts	Phase	HP (ea.)	CFM [L/s]*	RPM	FLA (ea.)	LRA (ea.)
RXRX-CCF0*C	2	208/230	1	0.47	2200	3000	1.55	1.1
RXRX-CCF0*D	2	460	3	0.40	1970	2750	0.51	1.9

*CFM is per fan at 0" w.c. external static pressure.

POWER EXHAUST KIT FOR DOWNFLOW ECONOMIZERS RXRX-RCF02*

*Voltage Code (C, D or Y)

- Shipped completely assembled
- All wiring from control box to economizer is supplied
- Color coordinated with the unit
- Fully insulated with 1" 1.5 lb. fiberglass insulation
- Motors are factory wired and tested
- Economizer Sold Separately
- When using this power exhaust system, clearance between the bottom of the unit and the finished roof deck should be a minimum of 10 inches. Some applications may require a taller roofcurb for proper installation.

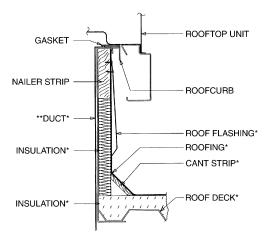


Model No.	Volt	Phase	Motor				@ 0.1				
			HP	RPM	LRA	Qty.	Cir. Qty.	FLA	MCA	Fuse Size	CFM
RXRX-RCF02C	208/230				5.86			2.70	3.38	6	
RXRX-RCF02D	460	1	1/2	1625	3.33	1	1	1.34	1.68	3	1989
RXRX-RCF02Y	575				2.52			1.06	1.33	2	

POWER EXHAUST KIT FOR HORIZONTAL ECONOMIZERS RXRX-RCF03*

*Voltage Code (C, D or Y)

- Shipped completely assembled
- All wiring from control box to economizer is supplied
- Color coordinated with the unit
- Fully insulated with 1" 1.5 lb. fiberglass insulation
- Motors are factory wired and tested
- Economizer with Relief Hood Sold Separately
- When using this power exhaust system, clearance between the bottom of the unit and the finished roof deck should be a minimum of 10 inches. Some applications may require a taller roofcurb for proper installation.

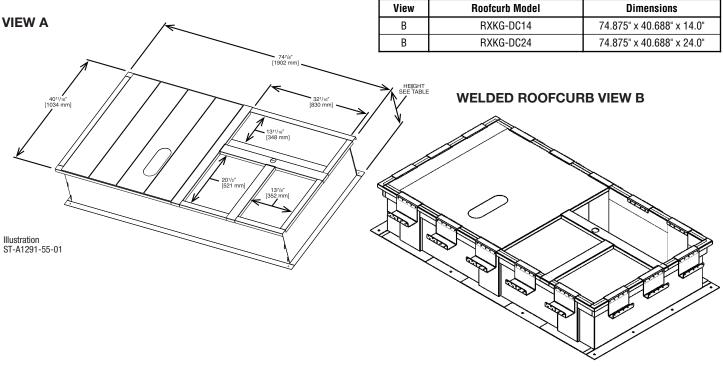


[] Designates Metric Conversions

Model No.	Volt	Phase	Motor				@ 0.1				
			HP	RPM	LRA	Qty.	Cir. Qty.	FLA	MCA	Fuse Size	CFM
RXRX-RCF03C	208/230	1		1625	5.86	1	1	2.70	3.38	6	2013
RXRX-RCF03D	460		1/2		3.33			1.34	1.68	3	
RXRX-RCF03Y	575				2.52			1.06	1.33	2	

ROOFCURBS (Full Perimeter)

- Russell[®] By Rheem's roofcurb design can be utilized on all 3-6 ton [10.6-17.6 kW] RGEC models
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models
- Quick assembly corners for simple and fast assembly
- Opening provided in bottom pan to match the "Thru the Curb" electrical, gas piping, condensate, connection opening provided on the unit base pan
- 1" [25 mm] x 4" [102 mm] Nailer provided
 Sealing gasket (40' [12.2 m]) provided with Roofcurb
- Packaged for easy field assembly

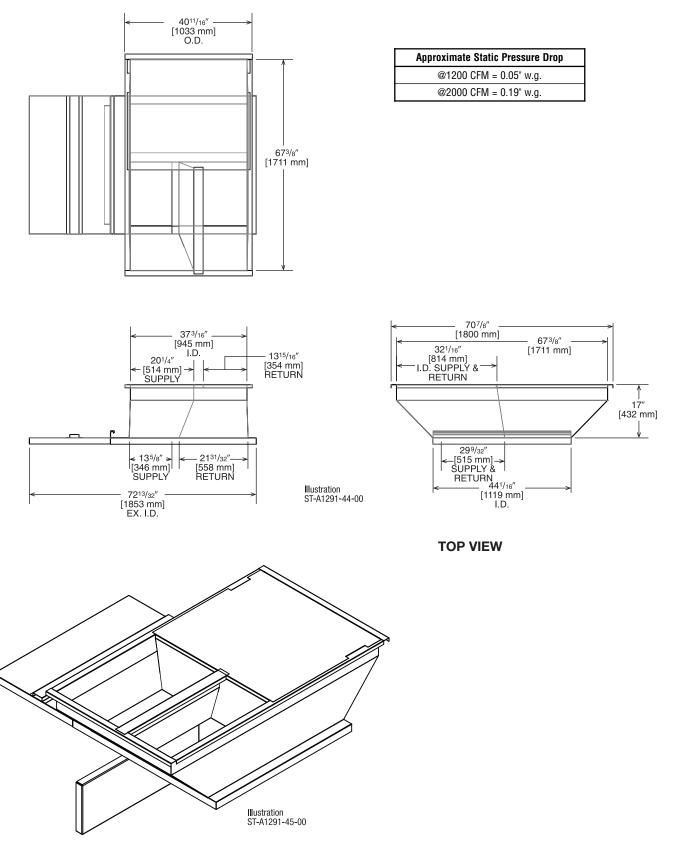

*BY CONTRACTOR

**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

Illustration ST-A0743-02

View	Roofcurb Model	Height of Curb
А	RXKG-DCC14	14" [356 mm]
А	RXKG-DCC24	24" [610 mm]

ROOFCURB INSTALLATION



[] Designates Metric Conversions

 State of Florida Approved: Approval Number FL 26981 for Technical Evaluation Report TER-20-28788 certifies the HVAC Unit and mounting methods for high wind resistance are compliant per Florida Building Code.

ROOFCURB ADAPTERS (CONTINUED)

RXRX-DCCAE

Guide Specifications RGEC – 036-072

You may copy this document directly into your building specification. This specification is written to comply with the 2016 version of the "master format" as published by the Construction Specification Institute. www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

- Size Range: 3 to 6 Nominal Tons
 - 1.00 General
 - A. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and heat pump for heating duty.
 - B. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
 - C. Unit shall use environmentally safe, R-454B refrigerant.
 - D. Unit shall be installed in accordance with the manufacturer's instructions.
 - E. Unit must be selected and installed in compliance with local, state, and federal codes.
 - 1.01 Quality Assurance
 - A. Unit meets ASHRAE 90.1 2022 minimum efficiency requirements.
 - B. Unit shall be rated in accordance with AHRI Standards 210/240 or 340/360 and 10 CFR appendix M1 to subpart B or part 430.
 - C. Unit shall be designed to conform to ASHRAE 15.
 - D. Unit shall be UL-tested and certified in accordance with Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
 - E. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
 - F. Unit casing shall be capable of withstanding 1000-hour salt spray exposure per ASTM B117 (scribed specimen).
 - G. Roof curb shall be designed to conform to NRCA Standards.
 - H. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
 - I. Unit shall be designed in accordance with UL Standard 60335-2-40 4th Edition. including tested to withstand rain.
 - 1.02 Manufacturer Qualifications
 - A. Unit shall be designed in accordance with ISO 9001:2015, and shall be manufactured in a facility registered by ISO 9001:2015.
 - 1.03 Installer Qualifications
 - A. The installer shall be trained to install and service equipment with A2L refrigerants.
 - 1.04 Delivery, Storage, and Handling
 - A. Unit shall be stored and handled per manufacturer's recommendations.
 - B. Lifted by crane requires either shipping top panel or spreader bars.
 - C. Unit shall only be stored or positioned in the upright position.
 - 1.05 Unit Cabinet
 - A. Unit cabinet shall be constructed of galvanized steel.
 - B. Unit cabinet exterior paint shall be: pre-painted steel.
 - C. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 1/2-in. thick, 1.6 lb density, flexible fiberglass insulation, foil faced on the air side. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
 - D. Base of unit shall have a location for thru-the-base gas and electrical connections standard.
 - E. Base Rail
 - i. Unit shall have base rails on a minimum of 4 sides.
 - ii. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - iii. Holes shall be provided in the base rail for moving the rooftop for fork truck.
 - iv. Base rail shall be a minimum of 14 gauge thickness.
 - F. Condensate pan and connections:
 - i. Shall be a sloped condensate drain pan made of a non-corrosive material and be removable for cleaning.
 - ii. Shall comply with ASHRAE Standard 62.
 - iii. Shall use a 3/4" NPT drain connection, possible either through the bottom or side of the drain pan. Connection shall be made per manufacturer's recommendations.
 - iv. Shall be able to be easily removed.

G. Top panel:

- i. Shall be a single piece top panel over indoor section.
- H. Gas Connections
 - i. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - ii. Thru-the-base-capability
 - a. Standard unit shall have a thru-the-base gas-line locations using a continuous raised, flange around opening in the basepan.
 - b. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- I. Electrical Connections
 - i. All unit power wiring shall enter unit cabinet via a single, factory-prepared, continuous raised flange opening in the basepan.
 - ii. Thru-the-base capability
 - a. Standard unit shall have a thru-the-base electrical location(s) using a raised, continuous raised flange opening in the basepan.
 - b. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- J. Component access panels (standard)
 - i. Cabinet panels shall be easily opened for servicing.
 - ii. Panels covering control box, indoor fan, indoor fan motor, gas components (where applicable), and filters shall have hinges with 1/4 turn fasteners on units with factory-installed hinged option.
 - iii. 1/4 turn fasteners shall be permanently attached.
- 1.06 Operating Characteristics
 - A. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 340/360 at ± 10% voltage.
 - B. Compressor with standard controls shall be capable of operation down to 50°F (10°C), ambient outdoor temperatures. Low ambient accessory kit is necessary if mechanically cooling at ambient temperatures to 0°F (-17.7°C).
 - C. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
 - D. Unit shall be factory configured for vertical supply & return configurations.
 - E. Unit shall be field convertible from vertical to horizontal configuration.
- 1.07 Electrical Requirements
 - A. Main power supply voltage, phase, and frequency must match those required by the manufacturer.
- 1.08 Evaporator fan compartment:
 - A. Interior cabinet surfaces shall be insulated with a minimum 1/2-in. thick, minimum 1.6 LB density, flexible fiberglass insulation bonded with foil face on the air side.
 - B. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
 - C. Insulation shall also be mechanically fastened with welded pin and retainer washer.
- 1.09 Thermostats
 - A. Thermostat must
 - i. Energize both "W" and "G" when calling for heat.
 - ii. Have capability to energize 1 stage of cooling, and at least 1 stage of heating.
 - iii. Include capability for occupancy scheduling.
- 1.10 Electronic Control System for HVAC
 - A. Shall be complete with self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side.
 - B. Shall utilize color-coded wiring.
 - C. Unit shall include a minimum of one 8-pin screw terminal connection board for connection of control wiring.
 - D. The heat exchanger shall be controlled by the Core Command microprocessor. See heat exchanger section of this specification.
- 1.10.01 Safeties:
 - A. Compressor over-temperature, over current.
 - B. Low-pressure switch.
 - i. Units shall have low pressure, loss of charge automatic reset device that will shut off compressor when tripped.
 - C. High-pressure switch.
 - i. Unit shall be equipped with high pressure switch device that will shut off compressor when tripped.
 - D. Automatic reset, motor thermal overload protector.

Russell® By Rheem | RGEC Packaged Gas Electric Units

- E. The unit must be permanently grounded.
- F. Components are not compatible between different refrigerants. Do not use R-410A service equipment or components on R-454B equipment. System or part failure could occur.
- G. Heating section shall be provided with the following minimum protections:
 - i. High-temperature limit switches.
 - ii. Induced draft motor pressure switch.
 - iii. Flame rollout switch.
 - iv. Flame proving controls.
- Standard Filter Section
- A. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- B. Unit will accept both 2-in. and 4-in. filters.
- C. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- D. Filters shall be accessible through an access panel with "no-tool" removal as described in the unit cabinet section of the specification.
- E. Filters access is specified in the unit cabinet section of this specification.
- F. Filters shall be held in place by metal rods, facilitating easy removal and installation.
- 1.12

1.11

- A. Standard Aluminum/MicroChannel Coils:
 - i. Standard evaporator and condenser coils shall be aluminum.
 - ii. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 400 psig, and qualified to burst test at 2,200 psi.
- 1.13 Refrigerant Components

Coils

- A. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - i. TXV metering system shall prevent mal-distribution of two-phase refrigerant.
 - ii. Refrigerant filter drier.
 - iii. Service gauge connections on suction and discharge lines.
 - iv. External pressure gauge ports access shall be located in front exterior of cabinet.
- B. Compressors
 - i. Unit shall use one fully hermetic scroll compressor.
 - ii. 3-5 ton RGEDYB units include one single-stage compressor.
 - iii. 6 ton RGECYB and 3-5 ton RGECYC units include one two-stage compressor.
 - iv. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - v. Compressors shall be internally protected from high discharge temperature conditions.
 - vi. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - vii. Compressor shall be factory mounted on rubber grommets.
 - viii. Compressor motors shall have internal line break thermal and current overload protection.
 - ix. Crankcase heaters shall not be required for normal operating range.
 - x. Compressor shall have molded electrical plug.
- 1.14 Evaporator Fan and Motor
 - A. Evaporator fan motor:
 - i. Shall have permanently lubricated bearings.
 - ii. Shall have inherent automatic-reset thermal overload protection.
 - B. Direct Drive Evaporator Fan:
 - i. Direct drive ECM technology with (5) dedicated speed selections as follows: fan, low, high, AC low static, AC high static.
 - ii. Blower fan shall be double-inlet type with forward-curved blades.
 - iii. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.
- 1.15 Condenser Fans and Motors
 - A. Condenser Fan Motors:
 - i. Shall be a totally enclosed motor.
 - ii. Shall use permanently lubricated bearings.
 - iii. Shall have inherent thermal overload protection with an automatic reset feature.
 - iv. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.

- B. Condenser Fans shall:
 - i. Shall be a direct-driven propeller type fan
 - ii. Shall have blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.
- 1.16 Gas Heat Compartment:
 - A. Aluminum foil-faced fiberglass insulation shall be used.
 - B. Insulation and adhesives shall meet NFPA 90A requirements for flame spread and smoke generation.
 - C. Insulation shall also be mechanically fastened with welded pin and retainer washer.
- 1.17 Gas Heat
 - A. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
 - B. Shall incorporate a direct-spark ignition system and redundant main gas valve.
 - C. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
 - D. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
 - E. The heat exchanger shall be controlled by the CoreCommand microprocessor.
 - i. The CoreCommand board shall notify users of fault using two 7 segment displays.
 - F. Standard Heat Exchanger construction
 - i. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
 - ii. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - iii. Burners shall incorporate orifice for rated heat output up to 2,000 ft. (610m) elevation with a gas heating valve of 1050. Alternate orifices may be required depending on local gas heating valves and elevations.
 - iv. Each heat exchanger tube shall contain restrictions similar to dimples for increased heating effectiveness.
 - G. Optional Stainless Steel Heat Exchanger construction
 - i. Use energy saving, direct-spark ignition system.
 - ii. Use a redundant main gas valve.
 - iii. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - iv. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - v. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - vi. Type 409 stainless steel shall be used in heat exchanger tubes.
 - H. Induced draft combustion motor and blower
 - i. Shall be a direct-drive, single inlet, forward-curved centrifugal type.
 - ii. Shall be made from steel with a corrosion-resistant finish.
 - iii. Shall be permanently lubricated sealed bearings.
 - iv. Shall have inherent thermal overload protection.
 - v. Shall have an automatic reset feature.

1.18 Special Features

- A. Integrated Economizers:
 - i. Integrated, parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - ii. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory-installed option.
 - iii. Damper blades shall be galvanized steel. Plastic or composite blades on intake or return shall not be acceptable.
 - iv. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - v. Shall be equipped with driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - vi. Shall be equipped with low-leakage dampers, not to exceed 2% leakage at 1 in. wg pressure differential.
 - vii. Shall be capable of introducing up to 100% outdoor air.
 - viii. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - ix. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - Enthalpy sensor shall be provided as standard. Outdoor air sensor set point shall be adjustable and shall range from 40 to 100°F / 4 to 38°C. Additional sensor options shall be available as accessories.

Russell® By Rheem | RGEC Packaged Gas Electric Units

- xi. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
- xii. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
- xiii. Dampers shall be completely closed when the unit is in the unoccupied mode.
- xiv. Economizer controller shall accept a 2-10Vdc CO₂ sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
- xv. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
- xvi. Economizer wire harness will have provision for smoke detector.
- B. Manual damper
 - i. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- C. Liquid Propane (LP) Conversion Kit (sold separately)
 - i. Kit shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- D. Condenser Coil Hail Guard Assembly
 - i. Shall protect against damage from hail.
 - ii. Shall be louvered style.
- D. Unit-Mounted, Non-Fused Disconnect Switch:
 - i. Switch shall be factory-installed, internally mounted.
 - ii. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - iii. Shall be accessible from outside the unit.
 - iv. Shall provide local shutdown and lockout capability.
- E. Convenience Outlet:
 - i. Non-Powered convenience outlet.
 - ii. Outlet shall be powered from a separate 115-120v power source.
 - iii. A transformer shall not be included.
 - iv. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.
 - v. Outlet shall include 15 amp GFI receptacle with independent fuse protection.
 - vi. Outlet shall be accessible from outside the unit.
- F. Flue

i. Flue Discharge shall direct unit exhaust horizontally and have the capability of being directed vertically.

- G. Propeller Power Exhaust:
 - i. Power exhaust shall be used in conjunction with an integrated economizer.
 - ii. Independent modules for vertical or horizontal return configurations shall be available.
 - iii. Horizontal power exhaust is shall be mounted in return ductwork.
 - iv. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.
- G. Roof Curbs (Vertical):
 - i. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - ii. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
- H. Return Air Enthalpy Sensor:
 - i. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.
 - I. Indoor Air Quality (CO₂) Sensor:
 - i. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 - ii. The IAQ sensor shall be available in duct mount, wall mount, or wall mount with LED display.
 - The set point shall have adjustment capability.
- J. Smoke detectors:
 - i. Shall be a Four-Wire Controller and Detector.
 - ii. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
 - iii. Shall use magnet-activated test/reset sensor switches.
 - iv. Shall have tool-less connection terminal access.

- v. Shall have a recessed momentary switch for testing and resetting the detector.
- vi. Controller shall include:
 - a. One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel
 - b. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - c. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - d. Capable of direct connection to two individual detector modules.
 - e. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.
- K. Barometric relief
 - i. Shall include damper, seals, hardware, and hoods to relieve excess building pressure.
 - ii. Damper shall gravity-close upon shutdown.
- L. Time Guard
 - i. Shall prevent compressor short cycling by providing a 5-minute delay (±2 minutes) before restarting a compressor after shutdown for any reason.
 - ii. One device shall be required per compressor.
- M. Refrigerant Leak Detection System:
 - i. Shall be standard and factory-installed in every unit.
 - ii. Shall trigger a fault code to the unit controller and initiate mitigation procedures.

GENERAL TERMS OF LIMITED WARRANTY*

Russell[®] By Rheem will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor
Commercial ApplicationsFive (5) Years
Residential Applications
[3 to 5 ton models only]Ten (10) Years
Parts
Commercial ApplicationsOne (1) Year
Residential Applications (Registration Required)
[3 to 5 ton models only]Ten (10) Years

Standard Heat Exchanger Commercial ApplicationsTen (10) Years Residential Applications [3 to 5 ton models only]Ten (10) Years	
Stainless Steel Heat Exchanger Commercial ApplicationsTwenty (20) Years Residential Applications (Registration Required) [3 to 5 ton models only]Twenty (20) Years	

*For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

©2025 Rheem Manufacturing Company. Trademarks are property of their respective owners.

In keeping with its policy of continuous progress and product improvement, Russell by Rheem reserves the right to make changes without notice.

Russell® By Rheem to ii 5600 Old Greenwood Road, Fort Smith, AR 72908 wit

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.