

Ruud Commercial Ultra™ Series Package Gas Electric Unit

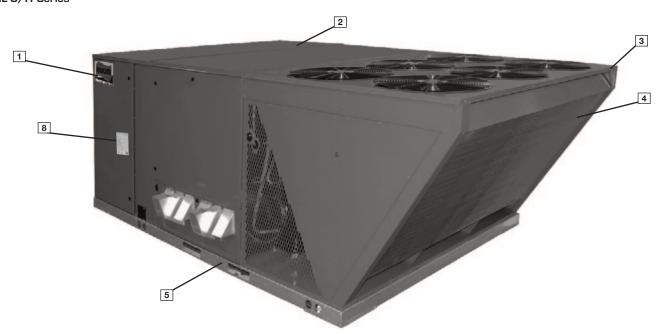
RKRL-C Series

With ClearControl™ Nominal Sizes 15 & 20 Tons [52.8 & 70.3 kW] ASHRAE 90.1-2007 Compliant

RKRL-H Series

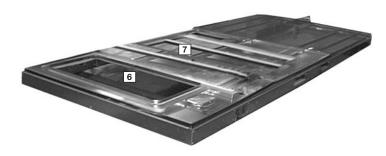
With ClearControl™ and VFD Technology Nominal Sizes 15 & 20 Tons [52.8 & 70.3 kW] ASHRAE 90.1-2010 Compliant

TABLE OF CONTENTS


Unit Features & Benefits	
Model Number Identification	9
Options	10
Selection Procedure	11
General Data	
RKRL-C/H Series	12-17
General Data Notes	18
Gross Systems Performance Data	
RKRL-C/H Series	19-20
Indoor Airflow Performance	
RKRL-C/H Series	21-24
Electrical Data	
RKRL-C/H Series	25-26
Dimensional Data	27-33
Accessories	34-47
Mechanical Specifications	48-52
Limited Warranty	53

RKRL-C/H STANDARD FEATURES INCLUDE:

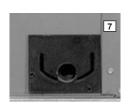
- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- · Dual stage compressors.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- · Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- · Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.
- · Forkable base rails for easy handling and lifting.
- Single point electrical connections and gas connections.

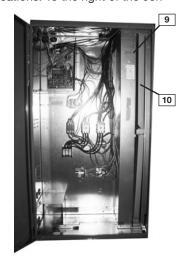

- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve direct spark ignition and induced draft for efficiency and reliability.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum evaporator coil.
- MicroChannel condenser coil.
- Factory Installed Direct Digital Control (DDC) and sensors which can connect to LonWorks™ or BACnet® BAS systems for remote monitoring and control.
- (-H) Models with Variable Frequency Drive (VFD) meet ASHRAE 90.1-2010 and California Title 24.
- MERV 8 (RXMF-M08A22520) & MERV 13 (RXMF-M13A22520) filters are available as an accessory.

Ruud Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Ruud Commercial Series™ label (1) identifies the brand to the customer.

The sheet-metal cabinet (2) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip (3), gasket-protected panels and screws. The slanted outdoor coil protects the coil from hail damage (4). Every Ruud package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

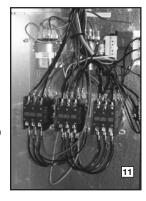
Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Ruud-required reliability tests. Ruud adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (a). Contractors can rest assured that when a Ruud package unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).

Electrical and filter compartment access is through a large, toolless, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the con-


trol box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

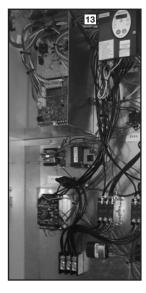
There is a blower contactor and compressor contactor for each compressor.

As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RKRL-C/H Package Gas Electric Unit has a Rooftop Unit

Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKRL-C/H Package Gas/Electric with ClearControl™ is specifically designed to be applied in four distinct applications:

The RKRL-C/H is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs onto the unit RTU-C controller and allows communication between ClearControl™ and the BACnet MSTP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.


The RKRL-C/H is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl™ and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.

The RKRL-C/H is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKRL-C/H is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.

-H models with factory installed VFD (13) (variable frequency drive) optimize energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD equipped units meet California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the

airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.

For added convenience in the field, a factory-installed convenience outlet and disconnect (14) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the high-voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

In the outdoor section are the external gauge ports. (15). With gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire assembly

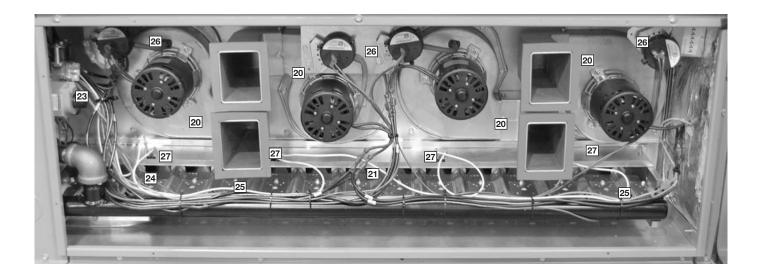
easily slides out by removing four #10 screws from the blower assembly. The adjustable motor pulley ([16]) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Ruud has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (17) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

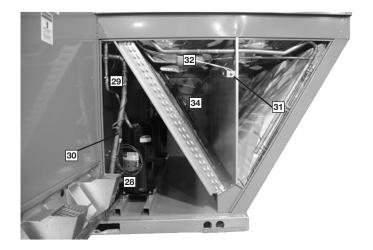
Also inside the blower compartment are the optional low-ambient controls (18). The lowambient controls allow for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. Use of polarized plugs and schrader fittings allow for easy field or factory installation. The freeze sensor clips on the suction line near the evaporator outlet. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow controller display.

and allows monitoring of the suction line temperature on the

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (19) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

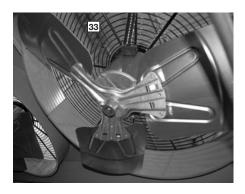

The furnace compartment contains the latest furnace technology on the market. The draft inducers (20) draw the flame from the Ruud exclusive in-shot burners (21) into the aluminized tubular heat exchanger (22) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipped with a two-stage gas valve (23), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.



The direct spark igniter (24) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (25) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (26) to assure adequate combustion airflow before ignition.
- Rollout switches (27) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.



The compressor compartment houses the heartbeat of the unit. The scroll compressor (28) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (29) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

The low-pressure switches (30) and high-pressure switches (31) are mounted on the appropriate refrigerant lines in the condenser section. The high-pressure switch will shut off the compressors if pressures exceeding 610 PSIG are detected as may occur if the outdoor fan motor fails. The low-pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs allow for easy field inspection and repair.

Each unit comes standard with filter dryer (32). The condenser fan motor (33) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit. The outdoor coil uses the latest enhanced fin design (34) for the most effective method of heat transfer. The outdoor coil is slanted to protect it from Mother Nature.

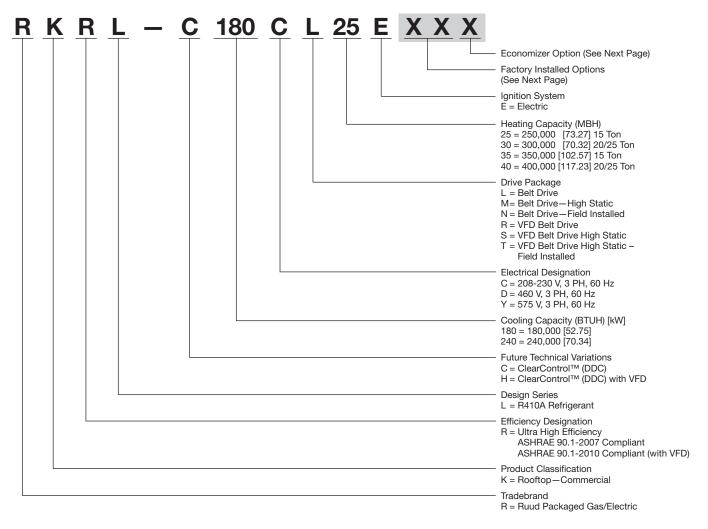
Each unit is designed for both downflow or horizontal applications (35) for job configuration flexibility. The return air

Three models exists; two for downflow applications (a downflow economizer with factory installed smoke detector in the return section is available), and one for horizontal applications. Each unit is pre-wired for the economizer to allow guick plug-in installation. The downflow economizer is also available as a factoryinstalled option. Power Exhaust is easily field-installed. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has

adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. The power exhaust is housed in the barometric relief opening and is easily

eliminated the need for linkage

slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.


The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display

or remotely through a network connection.

The Ruud roofcurb (37) is made for toolless assembly at the jobsite by inserting a pin into a hinge in each corner of the adjacent curb sides (38), which makes the assembly process quick and easy.

FACTORY INSTALLED OPTION CODES FOR RKRL-C/H (15 & 20 TON) [52.8 & 70.3 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AA			NO OPTIONS	
AD	Х			
AJ		X		
AH			x	
AR				Х
BF	Х		X	
BG	Х	X		
CY		X	X	X
JD	X			X
JB		X	х	
KA	Х	X		Х
DP	X	X	х	X

[&]quot;x" indicates factory installed option.

ECONOMIZER SELECTION FOR RKRL-C/H (15 & 20 TON) [52.8 & 70.3 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer* With Barometric Relief	DDC Single Enthalpy Economizer* With Barometric Relief and Smoke Detector
А	X		
Н		Х	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Example: RKRL-C240CL40E**XX**X (where **XX** is factory installed option)

Example: No Options

RKRL-C240CL40E

Example: No option with factory installed economizer

RKRL-C240CL40EAAH

Example: Options with low ambient and comfort alert, unwired convenience outlet, unfused service discon-

nect, and stainless steel heat exchanger with no factory installed economizer

RKRL-C240CL40ECYA

Example: Options same as above with factory installed economizer

RKRL-C240CL40ECYH

^{*}Downflow economizer only.

To select an RKRL-C/H Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example: Voltage-208/240V - 3 Phase - 60 Hz Total Cooling Capacity— 205,000 BTUH [60.0 kW] Sensible Cooling Capacity— 155,000 BTUH [45.4 kW] Heating Capacity-235,000 BTUH [68.8 kW] *Condenser Entering Air-95°F [35.0°C] DB *Evaporator Mixed Air Entering-65°F [18.3°C] WB 78°F [25.6°C] DB *Indoor Air Flow (vertical) --7200 CFM [3398 L/s]

0.70 in. WG [.17 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

*External Static Pressure-

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0°C] DB condenser inlet air. Interpolate between 63°F [17.2°C] WB and 67°F [19.4°C] to determine total and sensible capacity and power input for 65°F [18.3°C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,250 BTUH [69.76 kW] Sensible Cooling Capacity = 192,550 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

 $192,550 + (1.10 \times 7,200 \times (1 - 0.11) \times (78 - 80))$ Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $238,250 \times 0.99 = 235,868$ BTUH [69.06 kW] Sensible Capacity = $178,452 \times 0.96 = 171,314$ BTUH [50.16 kW] Power Input = $18,200 \times 0.99 = 18,018$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862 DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 235,868 - 9,765 = 226,103 BTUH [66.21 kW] Net Sensible Capacity = 171,314 - 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 243,000 BTUH [71.2 kW]

9. CHOOSE MODEL RKRL-C240CL30E.

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

H180CR25E	H180CR35E	H180CS25E	H180CS35E
			CONTINUED
178,000 [50.63]	178,000 [50.63]	178,000 [50.63]	178,000 [50.63]
11.6/NA	11.6/NA	11.6/NA	11.6/NA
6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]
172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
126,000 [35.84]	126,000 [35.84]	126,000 [35.84]	126,000 [35.84]
46,000 [13.08]	46,000 [13.08]	46,000 [13.08]	46,000 [13.08]
12.2/14	12.2/14	12.2/14	12.2/14
14.83	14.83	14.83	14.83
125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/35,000 [51.27/10.25]
		-	1,420,000/284,000 [416.06/83.2
	-	15-45 [8.3-25] /	30-60 [16.7-33.3] /
15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
81	81	81	81
10	14	10	14
2	2	2	2
0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
2/Scroll	2/Scroll	2/Scroll	2/Scroll
91	91	91	91
Louvered	Louvered	Louvered	Louvered
MicroChannel	MicroChannel	MicroChannel	MicroChannel
1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
			50.8 [4.72]
			1 / 23 [9]
			Louvered
			Rifled
			0.375 [9.5]
			26.67 [2.48]
		• •	2 / 18 [7]
			TX Valves
			1/1 [25.4]
<u> </u>			Propeller
·	•	· ·	•
			3/24 [609.6]
			Direct/1
			10000 [4719]
			3 at 1/3 HP
			1075
•	•	· ·	FC Centrifugal
			2/18x9 [457x229]
, , ,		, , ,	Belt (Adjustable)
Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
1	1	1	1
3	3	5	5
1725	1725	1725	1725
56	56	184	184
Disposable	Disposable	Disposable	Disposable
Yes	Yes	Yes	Yes
(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]
	-		
2021 [917]	2035 [923]	2059 [934]	2073 [940]
2147 [974]	2162 [981]	2185 [991]	2200 [998]
	11.6/NA 6000/5500 [2831/2595] 172,000 [48.92] 126,000 [35.84] 46,000 [13.08] 12.2/14 14.83 125,000/250,000 [36.62/73.25] 101,500/203,000 [29.74/59.48] 15-45 [8.3-25] / 15-45 [8.3-25] / 15-45 [8.3-25] / 15-45 [8.3-25] / 15-45 [8.3-25] / 15-45 [8.3-25] / 15-45 [8.3-25] / 15-45 [8.3-25] / 10 2 0.75 [19] 2/Scroll 91 Louvered MicroChannel 1 [25.4] 50.8 [4.72] 1 / 23 [9] Louvered Rifled 0.375 [9.5] 26.67 [2.48] 2 / 18 [7] TX Valves 1/1 [25.4] Propeller 3/24 [609.6] Direct/1 10000 [4719] 3 at 1/3 HP 1075 FC Centrifugal 2/18x9 [457x229] Belt (Adjustable) Single / Multiple 1 3 1725 56 Disposable Yes (8)2x25x20 [51x635x508] 170/173 [4820/4905]	11.6/NA 11.6/NA 6000/5500 [2831/2595] 6000/5500 [2831/2595] 172,000 [48.92] 172,000 [48.92] 172,000 [48.92] 126,000 [35.84] 46,000 [13.08] 46,000 [13.08] 12.2/14 12.2/14 12.2/14 14.83 18.1 10 14.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.6.NA 11.6.NA 11.6.NA 11.6.NA 11.6.NA 11.6.NA 11.6.NA 11.6.NA 11.6.NA 6000/5500 [2831/2595] 6000/5500 [2831/2595] 6000/5500 [2831/2595] 172,000 [48.92] 172,000 [48.92] 172,000 [48.92] 172,000 [48.92] 172,000 [48.92] 172,000 [36.84] 126,000 [35.84] 126,000 [35.84] 126,000 [35.84] 126,000 [35.84] 126,000 [35.84] 126,000 [30.8] 122/14 12.2/14 12.2/14 12.2/14 12.2/14 14.83 16.50 [25.000/250,000] [29.74/59.48] 142,000/284,000 [41.61/83.21] 101,500/203,000 [29.74/59.48] 142,000/284,000 [41.61/83.21] 101,500/203,000 [29.74/59.48] 16.54 [8.3-25] 30-60 [16.7-33.3] 15-45 [8.3-25] 15-

Model RKRL- Series Model RKRL- Series (with VFD)	C180DL25E H180DR25E	C180DL35E H180DR35E	C180DM25E H180DS25E	C180DM35E H180DS35E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	178,000 [50.63]	178,000 [50.63]	178,000 [50.63]	178,000 [50.63]
EER/SEER2	11.6/NA	11.6/NA	11.6/NA	11.6/NA
Nominal CFM/AHRI Rated CFM [L/s]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	6000/5500 [2831/2595]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	126,000 [35.84]	126,000 [35.84]	126,000 [35.84]	126,000 [35.84]
Net Latent Capacity Btu [kW]	46,000 [13.08]	46,000 [13.08]	46,000 [13.08]	46,000 [13.08]
IEER3 (Standard / VFD)	12.2/14	12.2/14	12.2/14	12.2/14
Net System Power kW	14.83	14.83	14.83	14.83
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125 000/250 000 [36 62/73 25]	175,000/350,000 [51.27/102.55]	125 000/250 000 [36 62/73 25]	175 000/350 000 [51 27/102 5
Heating Output Btu [kW] (1st Stage / 2nd Stage)		142,000/284,000 [41.61/83.21]	101,500/203,000 [29.74/59.48]	142,000/284,000 [41.61/83.2
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.73 [13]
•	2/Scroll	2/Scroll	2/Scroll	2/Scroll
No./Type	91	91	91	91
Outdoor Sound Rating (dB) ⁵				
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	3/24 [609.6]	3/24 [609.6]	3/24 [609.6]	3/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	10000 [4719]	10000 [4719]	10000 [4719]	10000 [4719]
No. Motors/HP	3 at 1/3 HP	3 at 1/3 HP	3 at 1/3 HP	3 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]	170/173 [4820/4905]
Weights	[,]	[[
Net Weight lbs. [kg]	2021 [917]	2035 [923]	2059 [934]	2073 [940]
	• •			
Ship Weight lbs. [kg]	2147 [974]	2162 [981]	2185 [991]	2200 [998]

Model RKRL- Series Model RKRL- Series (with VFD)	C180YL35E	C180YM35E	C240CL30E H240CR30E
Cooling Performance ¹			CONTINUED -
Gross Cooling Capacity Btu [kW]	178,000 [50.63]	178,000 [50.63]	242,000 [68.83]
EER/SEER ²	11.6/NA	11.6/NA	11.6/NA
Nominal CFM/AHRI Rated CFM [L/s]	6000/5500 [2831/2595]	6000/5500 [2831/2595]	8000/7375 [3775/3480]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	126,000 [35.84]	126,000 [35.84]	167,000 [47.50]
Net Latent Capacity Btu [kW]	46,000 [13.08]	46,000 [13.08]	63,000 [17.92]
IEER3 (Standard / VFD)	12.2/14	12.2/14	12.2/14
Net System Power kW	14.83	14.83	19.66
leating Performance (Gas) ⁴			
Heating Input Btu [kW] (1st Stage / 2nd Stage)	175,000/350,000 [51.27/102.55]	175,000/350,000 [51.27/102.55]	150,000/300,000 [43.95/87.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	142,000/284,000 [41.61/83.21]	142,000/284,000 [41.61/83.21]	121,500/243,000 [35.6/71.2
Temperature Rise Range °F [°C]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]	30-60 [16.7-33.3] / 30-60 [16.7-33.3]	15-45 [8.3-25] / 15-45 [8.3-25]
(1st Stage / 2nd Stage)	•	-	
Steady State Efficiency (%)	81	81	81
No. Burners	14	14	12
No. Stages	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]
ompressor No./Type	2/Scroll	2/Scroll	2/Scroll
utdoor Sound Rating (dB) ⁵	91	91	91
utdoor Coil—Fin Type	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves
•			
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
utdoor Fan—Type	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	3/24 [609.6]	3/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1
CFM [L/s]	10000 [4719]	10000 [4719]	19800 [9344]
No. Motors/HP	3 at 1/3 HP	3 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single	Single	Single / Multiple
No. Motors	1	1	1
Motor HP	3	5	5
Motor RPM	1725	1725	1725
Motor Frame Size	56	184	184
ilter—Type	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
efrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	170/173 [4820/4905]	170/173 [4820/4905]	271/227 [7683/6435]
/eights			
Net Weight lbs. [kg]	2055 [932]	2093 [949]	2289 [1038]
Ship Weight lbs. [kg]	2182 [990]	2220 [1007]	2389 [1084]

Model RKRL- Series Model RKRL- Series (with VFD)	C240CL40E H240CR40E	C240CM30E H240CS30E	C240CM40E H240CS40E	C240DL30E H240DR30E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	242,000 [68.83]	242,000 [68.83]	242,000 [68.83]	242,000 [68.83]
EER/SEER ²	11.6/NA	11.6/NA	11.6/NA	11.6/NA
Nominal CFM/AHRI Rated CFM [L/s]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	8000/7375 [3775/3480]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	167,000 [47.50]	167,000 [47.50]	167,000 [47.50]	167,000 [47.50]
Net Latent Capacity Btu [kW]	63,000 [17.92]	63,000 [17.92]	63,000 [17.92]	63,000 [17.92]
IEER3 (Standard / VFD)	12.2/14	12.2/14	12.2/14	12.2/14
Net System Power kW	19.66	19.66	19.66	19.66
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9
Heating Output Btu [kW] (1st Stage / 2nd Stage)	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	12	14	12
No. Stages	2	2	2	2
·				
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
9				
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	7 1/2	7 1/2	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	213	213	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	271/227 [7683/6435]	271/227 [7683/6435]	271/227 [7683/6435]	271/227 [7683/6435]
Weights				
Net Weight lbs. [kg]	2303 [1045]	2327 [1056]	2341 [1062]	2289 [1038]

Model RKNL- Series Model RKNL- Series (with VFD)	C240DL40E H240DR40E	C240DM30E H240DS30E	C240DM40E H240DS40E	C240YL40E
Cooling Performance ¹				CONTINUED -
Gross Cooling Capacity Btu [kW]	242,000 [68.83]	242,000 [68.83]	242,000 [68.83]	242,000 [68.83]
EER/SEER2	11.6/NA	11.6/NA	11.6/NA	11.6/NA
Nominal CFM/AHRI Rated CFM [L/s]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	8000/7375 [3775/3480]	8000/7375 [3775/3480]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	167,000 [47.50]	167,000 [47.50]	167,000 [47.50]	167,000 [47.50]
Net Latent Capacity Btu [kW]	63,000 [17.92]	63,000 [17.92]	63,000 [17.92]	63,000 [17.92]
IEER3 (Standard / VFD)	12.2/14	12.2/14	12.2/14	12.2/14
Net System Power kW	19.66	19.66	19.66	19.66
Heating Performance (Gas) ⁴				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	200,000/400,000 [58.6/117.
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	12	14	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	00 [0]	00 [0]	00 [0]	00 [0]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	MicroChannel	MicroChannel	MicroChannel	MicroChannel
**				
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]	50.8 [4.72]
Rows / FPI [FPcm]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]	1 / 23 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single
No. Motors	omgio / ividitipie	Single / Multiple	Single / Multiple	Jiligie 1
Motor HP	5	7 1/2	7 1/2	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	213	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	271/227 [7683/6435]	271/227 [7683/6435]	271/227 [7683/6435]	271/227 [7683/6435]
Weights				
Net Weight lbs. [kg]	2303 [1045]	2327 [1056]	2341 [1062]	2323 [1054]

Model RKRL- Series	C240YM40E	
Cooling Performance ¹		
Gross Cooling Capacity Btu [kW]	242,000 [68.83]	
EER/SEER ²	11.6/NA	
Nominal CFM/AHRI Rated CFM [L/s]	8000/7375 [3775/3480]	
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	
Net Sensible Capacity Btu [kW]	167,000 [47.50]	
Net Latent Capacity Btu [kW]	63,000 [17.92]	
IEER³ (Standard / VFD)	12.2/14	
Net System Power kW	19.66	
Heating Performance (Gas)4	19.00	
. ,	200,000/400,000 [58.6/117.2]	
Heating Input Btu [kW] (1st Stage / 2nd Stage)		
Heating Output Btu [kW] (1st Stage / 2nd Stage)	162,000/324,000 [47.47/94.93]	
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	25-55 [13.9-30.6] / 25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	
No. Burners	14	
No. Stages	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	
Compressor	9/Carall	
No./Type	2/Scroll	
Outdoor Sound Rating (dB) ⁵	91	
Outdoor Coil—Fin Type	Louvered	
Tube Type	MicroChannel	
Tube Size in. [mm] OD	1 [25.4]	
Face Area sq. ft. [sq. m]	50.8 [4.72]	
Rows / FPI [FPcm]	1 / 23 [9]	
Indoor Coil—Fin Type	Louvered	
Tube Type	Rifled	
Tube Size in. [mm]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	
Rows / FPI [FPcm]	4 / 15 [6]	
Refrigerant Control	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	
CFM [L/s]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	
Motor RPM	1075	
	FC Centrifugal	
Indoor Fan—Type		
No. Used/Diameter in. [mm]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single	
No. Motors	1	
Motor HP	7 1/2	
Motor RPM	1725	
Motor Frame Size	213	
Filter—Type	Disposable	
Furnished	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	271/227 [7683/6435]	
Weights		
Net Weight lbs. [kg]	2361 [1071]	
Ship Weight lbs. [kg]	2461 [1116]	
See Page 18 for Notes.		[] Designates Metric Conversion

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Energy Efficiency Ratio (IEER) is rated in accordance with AHRI Standard 210/240 or 360.
- 4. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 5. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

GROSS SYSTEMS PERFORMANCE DATA—C/H180

				EN	ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
\perp	CI	FM [L/s]	6050 [2855]	5500 [2596]	4675 [2206]	6050 [2855]	5500 [2596]	4675 [2206]	6050 [2855]	5500 [2596]	4675 [2206]
$oxed{}$		DR ①	.11	.09	.06	.11	.09	.06	.11	.09	.06
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	215.9 [63.3] 111.3 [32.6] 9.6	212.1 [62.1] 106.4 [31.2] 9.5	206.3 [60.4] 98.9 [29] 9.4	202.4 [59.3] 147.8 [43.3] 9.3	198.8 [58.2] 141.2 [41.4] 9.2	193.3 [56.7] 131.3 [38.5] 9.1	192.6 [56.4] 181 [53.0] 9.0	189.2 [55.4] 172.9 [50.7] 8.9	184 [53.9] 160.8 [47.1] 8.8
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	212 [62.1] 109.8 [32.2] 10.4	208.2 [61.0] 104.9 [30.7] 10.3	202.5 [59.3] 97.5 [28.6] 10.2	198.4 [58.1] 146.2 [42.8] 10.1	194.8 [57.1] 139.7 [40.9] 10.0	189.5 [55.5] 129.9 [38.1] 9.9	188.6 [55.3] 179.4 [52.6] 9.8	185.3 [54.3] 171.4 [50.2] 9.7	180.2 [52.8] 159.4 [46.7] 9.6
0 U T	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	207.2 [60.7] 107.8 [31.6] 11.3	203.5 [59.6] 103 [30.2] 11.2	198 [58] 95.8 [28.1] 11.0	193.7 [56.8] 144.2 [42.3] 11.0	190.2 [55.7] 137.8 [40.4] 10.9	185 [54.2] 128.1 [37.5] 10.7	183.9 [53.9] 177.4 [52.0] 10.7	180.6 [52.9] 169.5 [49.7] 10.6	175.7 [51.5] 157.6 [46.2] 10.5
D O R	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	201.8 [59.1] 105.4 [30.9] 12.2	198.2 [58.1] 100.7 [29.5] 12.1	192.8 [56.5] 93.6 [27.4] 11.9	188.2 [55.2] 141.8 [41.6] 11.9	184.9 [54.2] 135.5 [39.7] 11.8	179.8 [52.7] 126 [36.9] 11.6	178.5 [52.3] 175 [51.3] 11.6	175.3 [51.4] 167.2 [49.0] 11.5	170.5 [50.0] 155.5 [45.6] 11.4
R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	195.6 [57.3] 102.6 [30.1] 13.1	192.1 [56.3] 98 [28.7] 13.0	186.9 [54.8] 91.2 [26.7] 12.8	182.1 [53.4] 139 [40.7] 12.9	178.8 [52.4] 132.8 [38.9] 12.7	173.9 [51.0] 123.5 [36.2] 12.6	172.3 [50.5] 172.2 [50.5] 12.6	169.2 [49.6] 164.5 [48.2] 12.5	164.6 [48.2] 153 [44.8] 12.3
L B T E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	188.7 [55.3] 99.4 [29.1] 14.2	185.3 [54.3] 95 [27.8] 14.0	180.3 [52.8] 88.3 [25.9] 13.8	175.2 [51.3] 135.8 [39.8] 13.9	172 [50.4] 129.8 [38.0] 13.7	167.3 [49.0] 120.7 [35.4] 13.6	165.4 [48.5] 165.4 [48.5] 13.6	162.4 [47.6] 161.5 [47.3] 13.5	158 [46.3] 150.2 [44.0] 13.3
M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	181.1 [53.1] 95.8 [28.1] 15.2	177.8 [52.1] 91.6 [26.8] 15.1	173 [50.7] 85.1 [25] 14.9	167.5 [49.1] 132.2 [38.8] 14.9	164.5 [48.2] 126.3 [37.0] 14.8	160 [46.9] 117.5 [34.4] 14.6	157.7 [46.2] 157.7 [46.2] 14.6	154.9 [45.4] 154.9 [45.4] 14.5	150.7 [44.2] 147 [43.1] 14.3
A T U R	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	172.7 [50.6] 91.9 [26.9] 16.3	169.6 [49.7] 87.8 [25.7] 16.2	165 [48.3] 81.6 [23.9] 16	159.1 [46.6] 128.3 [37.6] 16.1	156.3 [45.8] 122.5 [35.9] 15.9	152 [44.5] 114 [33.4] 15.7	149.4 [43.8] 149.4 [43.8] 15.8	146.7 [43.0] 146.7 [43.0] 15.6	142.7 [41.8] 142.7 [41.8] 15.4
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	163.6 [47.9] 87.5 [25.6] 17.5	160.6 [47.1] 83.6 [24.5] 17.4	156.3 [45.8] 77.7 [22.8] 17.1	150 [44.0] 123.9 [36.3] 17.2	147.3 [43.2] 118.4 [34.7] 17.1	143.3 [42.0] 110.1 [32.3] 16.8	140.2 [41.1] 140.2 [41.1] 16.9	137.7 [40.4] 137.7 [40.4] 16.8	134 [39.3] 134 [39.3] 16.6
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	153.7 [45] 82.7 [24.2] 18.7	151 [44.2] 79 [23.2] 18.6	146.9 [43.0] 73.5 [21.5] 18.3	140.2 [41.1] 119.1 [34.9] 18.4	137.7 [40.3] 113.8 [33.3] 18.3	133.9 [39.2] 105.8 [31] 18.0	130.4 [38.2] 130.4 [38.2] 18.2	128.1 [37.5] 128.1 [37.5] 18.0	124.6 [36.5] 124.6 [36.5] 17.8
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	143.1 [41.9] 77.5 [22.7] 20.0	140.6 [41.2] 74.1 [21.7] 19.8	136.7 [40.1] 68.9 [20.2] 19.6	129.6 [38.0] 113.9 [33.4] 19.7	127.3 [37.3] 108.9 [31.9] 19.5	123.8 [36.3] 101.2 [29.7] 19.3	119.8 [35.1] 119.8 [35.1] 19.4	117.7 [34.5] 117.7 [34.5] 19.3	114.5 [33.5] 114.5 [33.5] 19.0

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH
Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA—C/H240

					ITERING INDOC	R AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		M [L/s]	8030 [3790]	7300 [3445]	6205 [2928]	8030 [3790]	7300 [3445]	6205 [2928]	8030 [3790]	7300 [3445]	6205 [2928]
\vdash		DR ①	.01	.08	.05	.01	.08	.05	.01	.08	.05
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
0 U T	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
D O O R	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
D R Y B U	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
B T	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
E M P E R	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
A T U R E °F	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2
	125 [51.7]	Total BTUH [kW] Sens BTUH [kW] Power	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2	245.9 [72.1] 186.8 [54.7] 16.5	241.5 [70.8] 178.5 [52.3] 16.4	234.9 [68.8] 166 [48.6] 16.2

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

AIRFLOW PERFORMANCE — 15 TON [52.8 kW]—SIDEFLOW

	Mod	del Ri	Model RKRL-C/H180 Voltage 208/230, 460, 575 — 3 Phase	/H180	≍	oltage	208/2	230, 4	60, 5	12	3 Pha	1Se																										
All															ш	xtern	al Sta	tic Pr	essure	Ĭ	External Static Pressure—Inches of Water [kPa]	of Wat	er [kP	[a]														
CEM II /e1	0.1[.0	02]	0.2[.0	15]	3 [.0	7] 0.	4 [.1	0]	5[.1	2] 0.1	6[.15	5] 0.7	7 [.17]	3.0	[.20]	0.0	0.8 [.20] 0.9 [.22]	1.0	[.25]	1:	1.0 [.25] 1.1 [.27]	1.2	[30]	1.2[.30] 1.3[.32] 1.4[.35] 1.5[.37] 1.6[.40]	.32]	1.4 [32]	1.5 [.	37] 1	.6 [.4		1.7 [.42]	2] 1.	1.8 [.45]		[.47]	1.9 [.47] 2.0 [[.50]
CI''' 1L/3 RPM W RPW	RPM	W	RPM	W	PM	W RF	١ Wc	W R	١	V RP	Σ	/ RP	M	RPM	W	RPM	8	W RPM	8	RPI	W RPM W RPM	RPM	≥	RPM	8	RPM	W RPM W RPM	PM	W	RPM	W	RPM W	V RPM	W	/ RPM	M	RPM	>
4800 [2265]	I	Ι	1	1	<u> </u>	_	<u> </u>	<u> </u>		— 583	33 1393	809 86	8 1508	98 632	1621	1 656	173	629	1841	101	1947	723	202	744	2154	764	2254	785 2	3326	805 2430		825 25	2537 844	14 2647	893	12761	881	2878
5000 [2359]	_	Ι		Ī	-	_	_	_	-	- 591	1476	919 92	6 1593	3 640	1707	. 699 /	182	0 686 1	1930	1930 708	2038	729	2145	750	2248	771	2350	791	2420 8	811 2	2528 8	830 26	2640 85	850 2755	898 99	12873	887	2995
5200 [2454]	ı	Ι	1	-	1	_ -	<u> </u>	<u> </u>	575 14	1442 600	00 1562	62 624	4 1681	31 648	8 1797		671 1911	1 693	2023	2023 715	2133	2133 736	2241	2241 757	2346	777	777 2410	797	2520	817 2633		836 27	2749 855	55 2869	89 874	1 2992	892	3118
5400 [2548]	-	1	-	1	-	_	_	39 —	33 15	583 1530 608 1652	16	52 632	2 1772	72 655	2 1890	829 0	3 2005	5 701	701 2119 722	722	2231	743	2340	2340 764 2447	2447	784	2512	804 2	2626	823 2744	744 8	842 28	2865 861	31 2989	89 879	3117	897	3248
5600 [2643]	ı	I	1	1	1		1	- 26	32 16	592 1621 616 1745	11/2	45 640	0 1866	99 99	3 1986	989 9	3 210.	3 708	2218	3 729	2103 708 2218 729 2331 750		2442		2551	770 2551 791 2620	2620	810 2739		330 2	830 2861 849	49 29	2987 867	37 3116	982	3248	903	3384
5800 [2737]	ı	Ι	1	1	<u>'</u> 	<u> </u>	76 15	188 60	71 17	576 1588 601 1715 625 1840 649	2 18	40 64	9 1964	34 672	2 2085	5 694	1 220	2204 716	2321	2321 737	2436 757		2548	178	778 2614 798	798	2735	817 2	2858	836 2985		855 31	3116 873	3 3249	168 61	3386	606	3527
6000 [2831]	ı	1	1	Ī	1	- 28	85 16	983 6	10 18	585 1683 610 1813 634 1940 657	4 19	40 65	7 2065	92 680	7 218	2187 702	230	2308 724	2426	2426 744	2543	292	2657	785	2731	802	2856	824 2	2984 8	843 3116	116 8	861 3251	51 879	.9 3389	897	3531	914	3676
6200 [2926]	1		-	-	570 1650 595 1783 619 1913 643 2042 666	320 26	95 17	783 6.	19 19	113 64	3 20	42 66	6 2169	889 68	3 229,	3 710	2293 710 2415	5 731	2535	752	2653	773	2728	792	2854	792 2854 812	2984	831 3116	116	850 3253	253 8	898 33	3392 886	3535	35 903	3682	920	3832
6400 [3020]	I	1	1	-	579 1750 604 1885 628 2017 652 2148 674	220 60	04 18	385 62	28 20	11 65	12 21	48 67	4 2276	269 92		2 718	2402 718 2526	6 739	2648	260	2767	780	2852	800	2983	800 2983 819 3118	3118	838	3255 8	826 33	3396 8	875 35	3541 89	892 3688	606 88	3839	956	3994
6600 [3114]	I	1	-		589 1854 614 1991	354 6.	14 19	191 6	37 21	637 2125 661 2257	1 22	57 683	3 2386	36 705	5 2514	4 727		2640 748	2763	298	2884	788	2984	808 3119	3119	827 3258		845 3	3400 8	863 3	3546 8	881 36	3692	3847	17 916	4003	_	I
6800 [3209]	_		574 18	822	1822 599 1961 623 2099 647 2235 670 2369	361 62	23 20	79 66u	47 22	35 67	70 23¢	69 692	2 2500	714	4 2629	9 735	5 2756	92/ 9	2882	922	2984	962	3121	815	3262	834	3405	853 3	3222 8	871 3.	3702 8	888 38	3826 90	905 4013	3 922	4173	-	I
7000 [3303]	1	-	584 19	930 (1930 609 2072 633 2211	772 6	33 22	111 6	56 23	656 2349 679 2484 701	79 248	84 70	1 2617	7 723	3 274	2748 744	4 2877	7 764	3003	3 785	3124	804	3265	823	3410	842	3559	860	3710 8	878 3	3865 8	895 40	4024 912	2 4185	35 929	4350		I
[7200 [3398]] 570 [1897] 595 [2042] 619 [2185] 643 [2327	570 1,	. 268	595 2ı	042 (319 21	185 64	43 23	327 GE	36 24	666 2466 689 2602 711	19 260	02 71	1 2737	37 732 2	2 287	2870 753	3 300	0 773	3000 773 3127	793	793 3270 812 3416 831 3566 849 3719 868	812	3416	831	3566	849	3719	898	3875	385 4	885 4035 902		4198 919	9 4364	74	1	I	I
NOTE: 1 Drive loft of held line M Drive right of held line	tjol of	Jod J.	d line	M	vo riot	of by	i Plo	9																														

NOTE: L-Drive left of bold line, M-Drive right of bold line.

Orive Package			L, R	R					M, S			
Motor H.P. [W]			3.0 [22	.0 [2237.1]					5.0 [3728.5]	28.5]		
Slower Sheave			BK105H	15H					BK105H	HS		
Aotor Sheave			1VL	IVL-44					1VP-56	99		
urns Open	-	2	3	4	2	9	1	7	3	4	5	9
RPM	733	701	699	640	605	572	927	806	873	840	808	775

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-15 TON [52.8 kW]

Coil 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.09 nflow 0.01 0.02 0.05 0.00 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0	CFM	4800 [2265]	5000 [2360]	5200 [2454]	5400 [2549]	5600 [2643]	5800 [2737]	6000 [2832]	6200 [2926]	6400 [3020]	6600 [3115]	6800 [3209]	7000 [3304]	7200 [3398]
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.09 0.09 0.001 0.011 0.011 0.011 0.011 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.011	[۲/3]					Res	istance —	- Inches o	f Water [k	(Pa]				
[0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.01] [Wet Coil	0.03	0.04	0.05	90.0	90.0	0.07	0.08	0.09	0.10	0.10	0.11	0.12	0.13
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03	Wet coll	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
[0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.01] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.04] [0.01] [Down	0.05	0.05	0.05	0.05	90'0	0.05	0.05	90.0	90'0	90.0	20.0	0.08	0.08
0.09 0.10 0.11 0.12 0.13 0.13 0.14 0.14 0.12 0.13 0.14 0.14 0.15 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.00 0.01 0.00		[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.05]
[0.02] [0.02] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.04] [0.04] [0.04] [0.06] [0.06] [0.06] [0.06] [0.06] [0.07] [0.08] [0.07] [0.08] [0.07] [0.08] [Downflow Economizer	0.09	0.10	01.0	0.11	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
4D80 or [0.00] 0.00 [0.00] 0.01 [0.00] 0.02 [0.00] 0.02 [0.00] 0.02 [0.00] 0.03 [0.00] 0.03 [0.00] 0.03 [0.01] 0.03 [0.01] 0.03 [0.01] 0.04 [0.01]	R.A. Damper Open	[0.02]	[0.05]	[0.02]	[0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
4D80 or [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.02] [0.03] [0.01]	Horizontal Economizer	0.00	0.01	0.01	0.05	0.02	0.03	0.03	0.04	0.04	0.05	0.02	90.0	90.0
ADBO or In PXMC-CJO7 0.21 0.25 0.28 0.32 0.35 0.39 0.43 0.46 In PXMC-CJO7 [0.05] [0.07] [0.08] [0.09] [0.10] [0.11] [0.11] In PXMC-CJO7 0.068 0.072 0.076 0.08 0.084 0.088 0.092 0.096 In PXMC-CJO7 0.072 0.071 [0.07] [0.07] [0.07] [0.07] [0.07] [0.07] In PXMC-CJO7 0.009 0.014 0.04 0.046 0.052 In PXMC-CJO7 0.001	R.A. Damper Open	[0.00]	[0.00]	[00:0]	[00.0]	[00:00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
Name-CJO7 [0.05] [0.06] [0.07] [0.08] [0.09] [0.10] [0.11]	Concentric Grill RXRN-AD80 or	0.21	0.25	0.28	0.32	0.35	0.39	0.43	0.46	09.0	0.54	0.57	0.61	0.64
0.068 0.072 0.076 0.08 0.084 0.088 0.092 0.096 [.02] [.03] [.03] [.04	RXRN-AD81 & Transition RXMC-CJ07	[0.05]	[0.06]	[0.0]	[0.08]	[0.09]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]
[.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.03] [.03]	o MCDM	0.068	0.072	9/0.0	0.08	0.084	0.088	0.092	0.096	0.1	0.104	0.108	0.112	0.116
0.009 0.015 0.021 0.028 0.034 0.04 0.046 0.052 0.052 0.034 0.041 0.041 0.041 0.041	riessure Diop Meny o	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]
1001	Drocento Droc MEDV 13	0.009	0.015	0.021	0.028	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083
		[.00]	[.00	[00:]	[.01]	[.01]	[.0]	[.0]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS-15 TON [52.8 kW]

					•	•							
ACTUAL—CFM	4800	2000	5200	5400	2600	5800	0009	6200	6400	0099	0089	2000	7200
[L/s]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3398]
TOTAL MBTUH	0.97	26.0	0.98	86.0	0.99	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06.0	0.92	0.94	0.97	0.99	1.02	1.04	1.06	1.09	1.11	1.14	1.16
POWER KW	0.98	0.98	0.99	66.0	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible	n factor times gro	oss performance	data-resulting	sensible capacity	y cannot exceed	total capacity.					[] Designates [ates Metric	Metric Conversions

AIRFLOW PERFORMANCE - 20 TON [70.3 kW]-60 Hz-SIDEFLOW

		_		6	_	4	0														ĺ
		2.0[.50		454	472	4412 965 4579 983 474610004914	008 5110									1			1		
		2.0		984	992	100		_									1				l
		47		4384	4561	4746	49401	5143	5355	_	1	-	_		1	1	1	_	_	1	l
		1.9 [.47]		996	974	983	991	1000	1009	1	1	1		1	1	1	1	1	1		ĺ
				1220	395	1579	1771	623	183	402	ı	1	1		1	I	1		1	Ι	l
		8.		348	926	965 4	4603 974 4771 991	983 7	392	002E	ı	Π			ī	ı	ı	-	1	П	l
		[2]	×)29	230	412 9	303 (303	312	2291			_	1	1	ı	1	1	ı		l
		1.7 [.42] 1.8 [.45]	RPM	29 4(38 4;	17 4	57 40	36 48	9,	985 522910025402	32 27	05 50	_		İ	1	<u> </u>	<u>.</u> 	i	<u>.</u>	l
		-		94 92	35 93	76 9t	36 98	34 96	11 97	36 29	32 96	16 10							_		ĺ
		1.6 [.40]	RPM W	386	406	42	4269 939 4436 957	9 463	487	3 506	9 528	9 551	9 575	9 601	<u> </u>	1			-		l
		1.6	RPI	911	920	926	936	946	956	396	979	386	366	100	1	1					l
		.37]	8	3731	3902	4081	4269	4466	4672	4886	5106	5342	2883	2832	6091	1	1	_	-	1	l
		1.5 [.37]	₹ЫМ	892	901	911		931	941	951	962	972	983	994	004	ı	1	-	1	_	
		55	W	220	739	917	103	586	203	716	937	168	407	929	913	179	1	Ī	ī		
		1.4 [.35]	М	72 3	82 3	92 3	03 4	13 4	24 4	34 4	45 4	26 5	9 2	78 5	89 5	900	1	_		Ī	
		-	_ B	.8 60	27 8	53 8	38	32 9	34 9	46 93	90	95	33 8	30	35 9	30 1 C	73 -		·		
		1.2 [.30] 1.3 [.32]	RPM W 685 2151 707 2306 729 2461 750 2617 771 2774 792 2932 813 3090 833 3250 853 3409 872 3570 892 3731 911 3894 <u>929 4056</u> 948 4220 966 4384 984 4549	698 2306 720 2462 741 2619 762 2777 783 2936 804 3095 824 3255 844 3415 863 3577 882 3739 901 3902 920 4069 938 4230 966 4395 974 4561 992 4727	690 2313 712 2470 733 2628 754 2786 775 2946 795 3106 815 3266 835 3428 854 3590 874 3753 892 3917 911 4081 929 4246 947	66 2962 787 3123 807 3285 827 3447 846 3610 865 3774 884 3938 903 4103 921	696 2505 717 2665 738 2825 759 2985 779 3147 799 3309 819 3472 838 3636 857 3801 876 3966 895 4132 913 4299 931 4466 949 4634 966 4803 983 4973 1000 5143	3 43,	05 3543 824 3708 843 3874 862 4041 880 4209 899 4377 917 4546 934 4716 951 4886 968 5057	3 47(9 49) 52;	945 5305 961 5480 978 5656 994 5832 1009 6010	3 57.	4 60(980 6093 996 6273	18 65	<u> </u>	1		
	a]	1.3	RPI	823	98	874	788	89	906	91.	928	936) 62(.96	973	786	966	100	_		l
	ar [kf	.30]	8	3250	3415	3290	3772	996E	4167	4377	4596	4823	2060	530	5556	5822	3609	7289	3999		l
	Wate	1.2	RPM	833	844	854	865	876	887	899	910	921	933	945	926	896	980	992	1005	1	l
	es of	[12	×	060	255	428	610	801	000	500	426	.652	887	131	383	644	915	194	181	778	l
	Inch	1.1 [.27]	PM	113 3	24 3	32 3	46 3	127 3	69	80 4	92 4	04 4	16 4	28 5	40	52 5	94 5	9 22	9 68	6595 1002 6778	ĺ
	Te-	2	N R	32 8	8 66	3 99	47 8	3 98	34 8	41 8	27 8	81 6	.15 6	3 29	3	3 89	3 98	14 6	3 00	95 1	ĺ
	ressi	0 [.2	M	2 29	4 30	5 32	7 34	98 38	0.38	2 40	42	9 44	8 47	1 49	3 52	6 54	8 57	1 60	4 63		ĺ
	External Static Pressure—Inches of Water [kPa]	.7 [.17] 0.8 [.20] 0.9 [.22] 1.0 [.25]	RP	4 79	9	6 81	5 82	2 83	9 85	4 86	9 87	2 88	3 89	4 91	4 92	2	9	<u> 5</u> 96	0 97	3 98	l
	al Sta	[.22	N .	277	3 293	310	328	347	998	387	3 408	3 431	454	3 478	503	9 529	555	583	8 612	641	l
	derna	0.9	RPI	122	7 783	3 795	3 80 <u>7</u>	9 819	4 83-	843	1 856	3 868	3 881	2 893) 	7 919	2 932	<u> </u> 945	<u>]</u> 958	2 971	l
	Ð	[.20]	8	261	277	294	312	330	320	370	395	414;	437;	461	486	511	538	292	594	623;	l
		9.0	RPM	750	762	775	787	799	812	824	288	820	862	875	889	902	915	929	942	956	
		17	PM W	2461	2619	2786	2962	3147	3341	3543	3754	3974	4203	4441	4687	4942	5206	5479	5761	6052	
된		0.7	3PM	729	741	754	992	179	792	805	818	831	844	857	871	884	868	912	926	940	l
se 60			W	908	462	628	802	982	177	378	288	908	034	270	515	692	031	303	283	872	
Pha		. 9:	PM	07 23	20 2	33 2	46 2	59 2	72 3	85 3	98 3	12 3	25 4	39 4	53 4	67 4	81 5	92 2:	09 2	23 5	
ျ ိ ု		2] 0	N B	51 7	2 90	707	43 7	125 7	115 7	14 7	123 7	40 8	8 29	00	43 8	8 96	8 22	27 8	02 9	93 9	l
, 575		5[.1	M	35 21	38 23	2 24	32 SE	38 28	32 3C	35 32	79 34	33 36	3E 9(20 41	35 43	19 45	3 48	7 51)2 5 4)7 SE	l
460			RP	39 —		3 71	34 72	35 73	54 75	51 76	58 77	73 75)8 8C	31 82	73 83	53 84	33 86	51 87	59 86	l 4 90	ĺ
/230		=	۷ ۱	_	1) 23-	1 248	26	1 28	306	325	3 347	396	390	3 417	442	5 468) 49	5 52	. 22	
3 208		0.4	RPI	1	1)69	, 20 ₇	11.	3 73	1 74	1 759	3 773	78.	708	816	83(84	98	878	890	l
Voltage 208/230, 460, 575 — 3 Phase 60		.07	M	1	1	1	682 2327 704 2484 725 2643 746 2802 7	2505	2693	2886	3094	3308	3531	3762	4003	4252	4510	4777	5052	5337	
۶		0.3	RPM	1	I	1	682	969	710	724	739	753	292	782	797	812	827	842	857	872	ĺ
240		02]	M	П	ı	Π	Π	Ι	533	727	931	143	365	595	834	081	338	603	877	160	
Model RKRL-C240		1.2 [ЬМ	П	1		П	1	689 2533 710 2693 731 2864 752 3015 772 3177 792 3341 812 3504 831 3669 850 3834 869 4000 887 4167 906 4334 924 4503 941 4672 959 4841 976 5012 992 5183 1009 5355	04 2	18 2	33 3	748 3	63 3	78 3	93 4	08 4	24 4	39 4	55 5	
E K		2] [۸	<u> </u>	1		<u>.</u>	· -	9	2 999	7 897	7 97	66	128 7	365 7	1117	99,	130 8	703 8	384 8	
Mode		0.1[.02] 0.2[.05] 0.3[.07] 0.4[.10] 0.5[.12] 0.6[.15]	RPM W RF	Н					_	12 25	7 27	2 25	31	13 34	.8 36	74 35	υ ₀ 41	15 44	1 47	17 45	
L				<u> </u>	1	<u></u>	3] —	3] —	 - -	3] 68	1] 69	5] 71	3] 72	1] 74	3] 75	3] 77	7] 79	۱] 80	3] 82)] 83	
ا ا	<u></u>	CEM [1 /e]	[-/9]	6400 [3020]	6600 [3114]	6800 [3209]	7000 [3303]	7200 [3398]	7400 [3492]	7600 [3586] 682 2566 704 2727 724 2889 745 3051 765 3214 785 3378 80	7800 [3681] [697 [2768] 718 [2931 739 3094 759 3258 779 3258 779 3423 798 3588 818 3754 837 3921 856 4089 874 4257 892 4426 910 4596 928 4764 945 4937 962 5109 979 5282 995 5456	8000 [3775] 712 [2979] 733 [3143] 753 [3308] 773 [3473] 793 [3640] 812 [3806] 831 [3974] 850 [4142] 868 [4312] 886 [4481] 904 [4652] 921 [4823] [393 [4995] 956 [5168] 972 [5342] 989 [5516] 1005 [5691]	8200 [3869] 728 [3199] 748 [3365] 768 [3531 787 [3698] 806 [3865] 825 [4034] 844 [4203] 862 [4373] 881 [4543] 898 [4715] 916 [4887] <u>913 [5060]</u> 950 [523] 967 [5407] 983 [5583] 999 [5758]	8400 [3964] 743 [3428 763 [3595 782 [3762 802 [3931 820 4100 839 4270 857 4441 875 4612 893 4784 911 4957 <u>928 5131 </u>	8600 [4058] 758 [3665] 778 [3834 797 4003 816 4173 835 4343 853 4515 871 4687 889 4860 906 5034 923 5208 940 5383 956 5559 973 5735 989 5913 1004 6091	8800 [4153] 774 [3911 793 4081] 812 [4252] 830 [4423] 849 [4596] 867 [4769] 884 [4942] 902 [5117] 919 [5292] 936 [5468] 952 [5644] 968 [5822] 984 [6000] 1000 [5179]	9000 [4247] 790 [4166] 808 [4338] 827 [4510] 845 [4683] 863 [4857] 881 [5031] 898 [5206] 915 [5382] 932 [5559] 948 [5736] 964 [5915]	9200 [4341] 805 [4430] 824 [4603] 842 [477] 860 [4951] 877 [5127] 895 [5303] 912 [5479] <u>929 [5657] 945 [5835]</u> 961 [6014] 977 [6194] 992 [6374] 1008 [6555]	9400 [4436] 821 [4703] 839 [4877] 857 [5052] 875 [5229] 892 [5405] 909 [5583] 926 [5761] [942 [5940] 958 [6120] 974 [6300] 989 [6481] 1005 [6663	9600 [4530] 837 4984 855 5160 872 5337 890 5514 907 5693 923 5872 <mark> 940 6052</mark> 956 6232 971 6413 987	
•	A P	Ĭ	5	400 [009	800	000	200	400	009	800	000	200 [400	009	800	000	200 [400	009	
ш		_		ဖ်	Ø	Ó	/	7	/	7	^	œ	∞	œ	∞	œ́	တ်	6	Ó	တ်	ļ

NOTE: L-Drive left of bold line, M-Drive right of bold line, N-Drive right of doouble line.

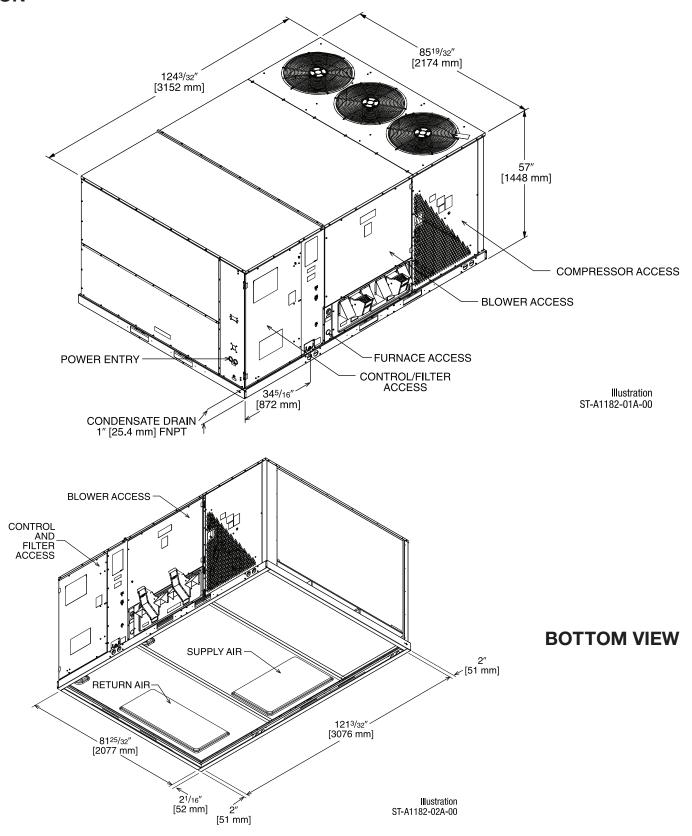
Drive Package			_						≥					N(f	J(field installed only)	lled only)	_	
Motor H.P. [W]			5.0 [3728.5]	28.5]					7.5 [5592.7]	32.7]					7.5 [5592.7]	92.7]		
Blower Sheave			BK120H	10H					BK130H	논					BK120H	HO		
Motor Sheave			1VP-56	-56					1VP-71	71					1VP-71	71		
Turns Open	-	2	3	4	2	9	-	2	3	4	2	9	-	2	3	4	2	9
RPM	822	262	771 742		712	684	932	902	828	851	824	797	797 1007	8/6	646	921	892	863

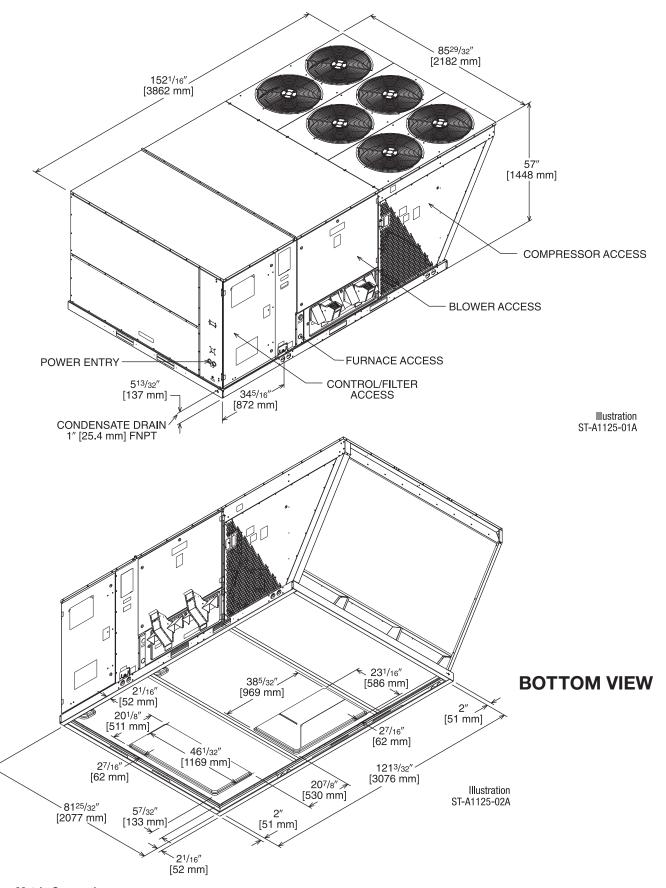
NOTES: 1. Factory sheave settings are shown in bold type. 2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

[] Designates Metric Conversions

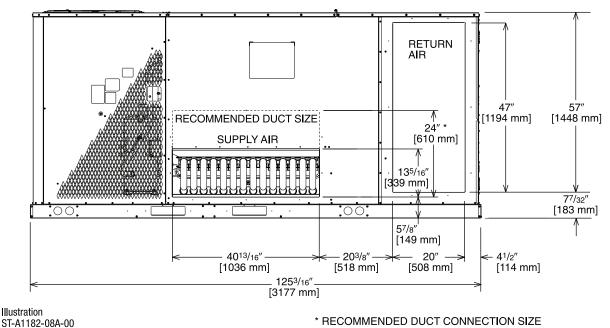
23

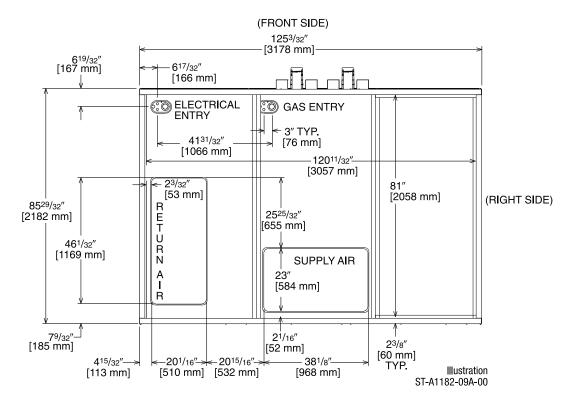

COMPONENT AIRFLOW RESISTANCE—20 TON [70.3 kW]


							Comp	Component Airflow Resistance	w Resistanc	9		
Airflow CFM [L/s]	Airli	Airflow Correction Factors*	***************************************	Wet Coil	Downflow	Downflow Economizer RA Damper Open	Horizontal Economizer RA Damper Open	Concentric Grill RXRN-AD80 or RXRN-AD81 & Transition RXMC-CJ07	Concentric Grill RXRN-AD86 & Transition RXMC-CK08	Concentric Grill RXRN-AD88 & Transition RXMC-CL09	Pressure Drop MERV 8	Pressure Drop MERV 13
	Total MBH	Sensible MBH	Power kW				«	Resistance — Inches of Water [kPa]	of Water [kPa]			
6400 [3020]	76.0	0.88	86.0	0.01 [.00]	0.06 [.01]	0.15 [.04]	0.04 [.01]	0.50 [.12]	1	7.1	0.100 [.02]	0.058 [.01]
6600 [3114]	0.97	06:0	0.99	0.02 [.00]	0.06 [.01]	0.16 [.04]	0.05 [.01]	0.54 [.13]	I	7.5	0.104 [.02]	0.065 [.02]
6800 [3209]	0.98	0.92	0.99	0.03 [.01]	0.07 [.02]	0.16 [.04]	0.05 [.01]	1	1	7.8	0.108 [.03]	0.071 [.02]
7000 [3303]	0.98	0.94	0.99	0.03 [.01]	0.08 [.02]	0.17 [.04]	0.06 [.01]	I	1	8.2	0.112 [.03]	0.077 [.02]
7200 [3398]	0.99	96.0	0.99	0.04 [.01]	0.08 [.02]	0.18 [.04]	0.06 [.01]	I	0.38 [.09]	8.6	0.116 [.03]	0.083 [.02]
7400 [3492]	0.99	76.0	1.00	0.05 [.01]	0.09 [.02]	0.19 [.05]	0.07 [.02]	I	0.41 [.10]	9.0	0.120 [.03]	0.089 [.02]
7600 [3586]	1.00	0.99	1.00	0.06 [.01]	0.10 [.02]	0.20 [.05]	0.07 [.02]	I	0.44 [.11]	9.5	0.124 [.03]	0.095 [.02]
7800 [3681]	1.00	1.01	1.00	0.06 [.01]	0.11 [.03]	0.21 [.05]	0.08 [.02]	_	0.47 [.12]	6.6	0.128 [.03]	0.102 [.02]
8000 [3775]	1.01	1.03	1.00	0.07 [.02]	0.12 [.03]	0.22 [.05]	0.09 [.02]	1	0.50 [.12]		0.132 [.03]	0.108 [.03]
8200 [3869]	1.01	1.05	1.01	0.08 [.02]	0.13 [.03]	0.23 [.06]	0.09 [.02]	_	0.53 [.13]		0.136 [.03]	0.114 [.03]
8400 [3964]	1.02	1.07	1.01	0.09 [.02]	0.14 [.03]	0.24 [.06]	0.10 [.02]	I	0.56 [.14]		0.140 [.03]	0.120 [.03]
8600 [4058]	1.02	1.09	1.01	0.09 [.02]	0.15 [.04]	0.25 [.06]	0.10 [.02]	1	0.59 [.15]		0.144 [.03]	0.126 [.03]
8800 [4153]	1.03	1.10	1.01	0.10 [.02]	0.16 [.04]	0.26 [.06]	0.11 [.03]	1	0.62 [.15]		0.148 [.04]	0.132 [.03]
9000 [4247]	1.03	1.12	1.01	0.11 [.03]	0.18 [.04]	0.27 [.07]	0.11 [.03]	1	1		0.152 [.04]	0.138 [.03]
9200 [4341]	1.03	1.14	1.02	0.12 [.03]	0.19 [.05]	0.28 [.07]	0.12 [.03]	-	1		0.156 [.04]	0.145 [.04]
9400 [4436]	1.04	1.16	1.02	0.12 [.03]	0.20 [.05]	0.29 [.07]	0.12 [.03]	1	ı		0.160 [.04]	0.151 [.04]
9600 [4530]	1.04	1.18	1.02	0.13 [.03]	0.22 [.05]	0.30 [.07]	0.13 [.03]	-	1		0.164 [.04]	0.157 [.04]

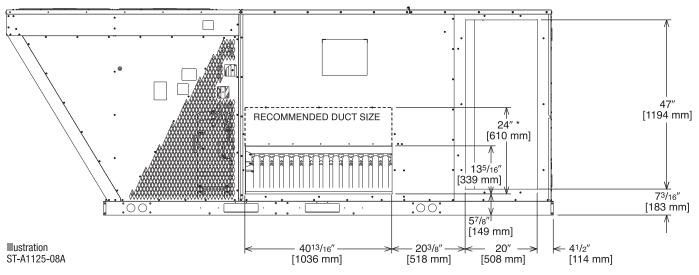
* Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.

		ELECTR	RICAL DATA –	RKRL- SERIE	S		
		C180CL H180CR	C180CM H180CS	C180DL H180DR	C180DM H180DS	C180YL	C180YM
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632
ion	Volts	208/230	208/230	460	460	575	575
in a	Minimum Circuit Ampacity	75/75	79/79	38	40	29	30
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45	35	35
ä	Maximum Overcurrent Protection Device Size	100/100	100/100	50	50	35	35
	No.	2	2	2	2	2	2
	Volts	200/230	200/230	460	460	575	575
- i	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
l Sor	HP, Compressor 1	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2
ress	Amps (RLA), Comp. 1	25/25	25/25	12.8	12.8	9.6	9.6
Compressor Motor Compressor Motor	Amps (LRA), Comp. 1	164/164	164/164	100	100	78	78
	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2
	Amps (RLA), Comp. 2	25/25	25/25	12.8	12.8	9.6	9.6
	Amps (LRA), Comp. 2	164/164	164/164	100	100	78	78
	No.	3	3	3	3	3	3
Mot	Volts	208/230	208/230	460	460	575	575
SOL	Phase	1	1	1	1	1	1
res	HP	1/3	1/3	1/3	1/3	1/3	1/3
E I	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	1	1
ŭ	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	1.8	1.8
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	575	575
ıtor	Phase	3	3	3	3	3	3
pora	HP	3	5	3	5	3	5
Evaporator Fan	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6	3.5	5.3
_	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3	20	39.4


		ELECTF	RICAL DATA – I	RKRL- SERIE	S		
		C240CL H240CR	C240CM H240CS	C240DL H240DR	C240DM H240DS	C240YL	C240YM
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	518-632	518-632
ion	Volts	208/230	208/230	460	460	575	575
ma!	Minimum Circuit Ampacity	95/95	103/103	49	52	37	39
Unit Information	Minimum Overcurrent Protection Device Size	110/110	125/125	60	60	40	45
un	Maximum Overcurrent Protection Device Size	110/110	125/125	60	60	45	50
	No.	2	2	2	2	2	2
	Volts	200/230	200/230	460	460	575	575
-	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
or I	HP, Compressor 1	10	10	10	10	10	10
ress	Amps (RLA), Comp. 1	30.1/30.1	30.1/30.1	16.7	16.7	12.2	12.2
Compressor Motor	Amps (LRA), Comp. 1	225/225	225/225	114	114	80	80
ತ	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2
	Amps (RLA), Comp. 2	27.6/27.6	27.6/27.6	12.8	12.8	9.6	9.6
	Amps (LRA), Comp. 2	191/191	191/191	100	100	78	78
or	No.	6	6	6	6	6	6
₩	Volts	208/230	208/230	460	460	575	575
sor	Phase	1	1	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3
<u>E</u>	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4	1	1
ŭ	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4	1.8	1.8
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	575	575
ţ.	Phase	3	3	3	3	3	3
pora	HP	5	7 1/2	5	7 1/2	5	7 1/2
Evaporator Fan	Amps (FLA, each)	14.7/14.7	23.1/23.1	6.6	9.6	5.3	7.8
_	Amps (LRA, each)	82.6/82.6	136/136	46.3	67	39.4	53.8

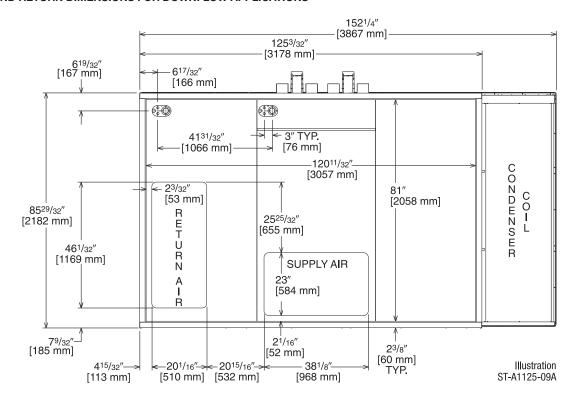

[] Designates Metric Conversions

SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

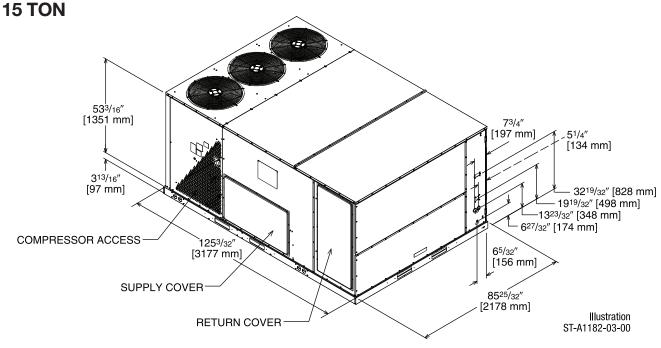

DUCT SIDE VIEW (REAR)

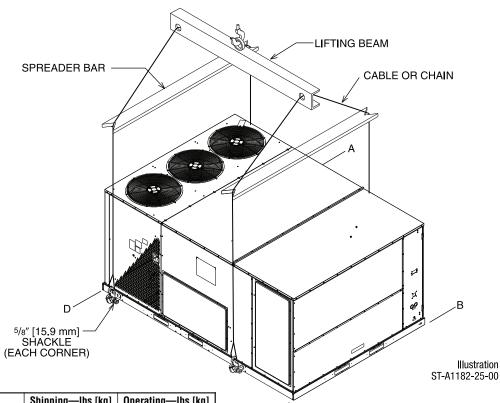
SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

BOTTOM VIEW


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

* RECOMMENDED DUCT CONNECTION SIZE


DUCT SIDE VIEW (REAR)


SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

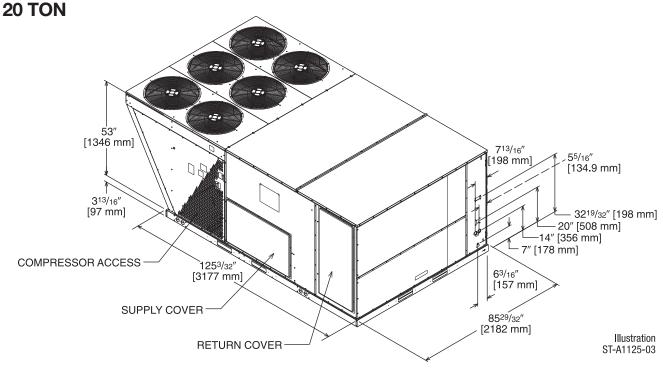
BOTTOM VIEW

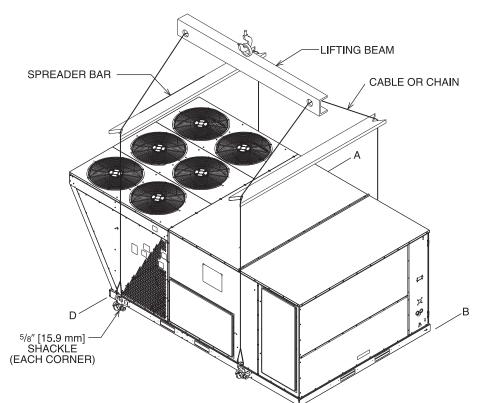
UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

WEIGHTS

Accessory	Shipping—lbs [kg]	Operating—lbs [kg]
Downflow Economizer	277 [125.6]	168 [76.2]
Horizontal Economizer	333 [151.0]	301 [136.5]
Power Exhaust	119 [54.0]	59 [26.8]
Manual Fresh Air Damper*	61 [27.7]	52 [23.6]
Motor Kit for Fresh Air Damper*	42 [19.1]	35 [15.9]
Roofcurb, 14"	184 [83.5]	176 [79.8]
Hail Guard	50 [22.7]	45 [20.4]

NOTES: *Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection.


Capacity Tons [kW]	Corner	Weights	by Perc	entage
	Α	В	С	D
15-25 [52.8-87.9]	32%	27%	16%	24%


Corner weights measured at base of unit.

[] Designates Metric Conversions

31

UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

WEIGHTS

Accessory	Shipping—lbs [kg]	Operating—lbs [kg]
Economizer—Downflow	155 [70.31]	146 [66.22]
Economizer—Horizontal	165 [74.80]	155 [70.31]
Fresh Air Damper (Manual)	51 [23.13]	40 [18.14]
Fresh Air Damper (Motorized)	46 [20.87]	35 [15.88]
Roof Curb 14"	170 [77.11]	164 [74.39]

15-25 [52.8-87.9] 32% 27% 16% Corner weights measured at base of unit.

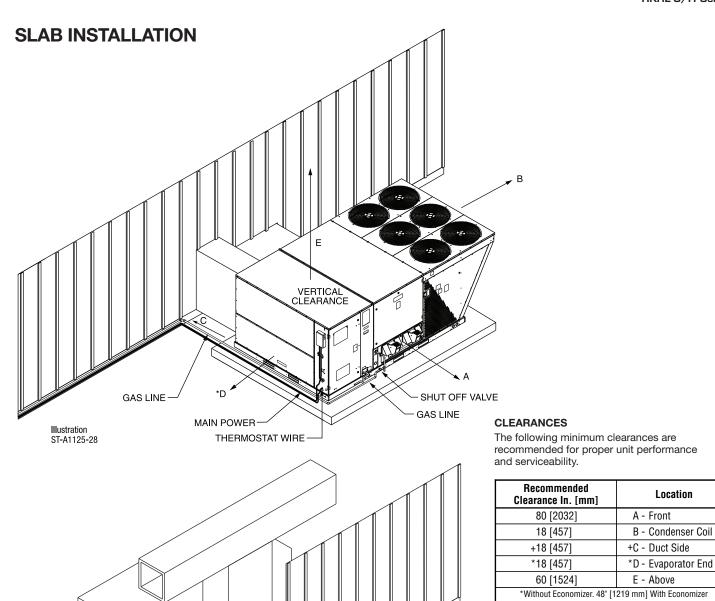
Capacity Tons [kW]

Corner Weights by Percentage

C

D

24%


В

^[] Designates Metric Conversions

Location

+Without Horizontal Economizer, 42" [1067 mm] with Horizontal Economizer

GAS LINE DRAINLINE

[] Designates Metric Conversions

Illustration ST-A1125-27 MAIN POWER WIRE

THERMOSTAT WIRE

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-PMCM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD-SMCM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV03	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-RMCM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Power Exhaust (575V)	RXRX-BGF05Y	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes
MERV 8 Filter	RXMF-M08A22520	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A22520	2 [0.9]	1 [0.45]	No

^{*}Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection. +Do not use on or RKRL-C 300C voltage models.

^[] Designates Metric Conversions

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

COMMUNICATION CARDS Field Installed

BACnet® COMMUNICATION CARD RXRX-AY01

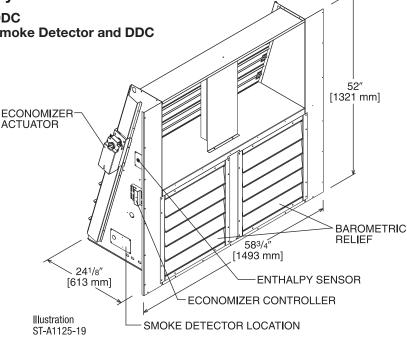
The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

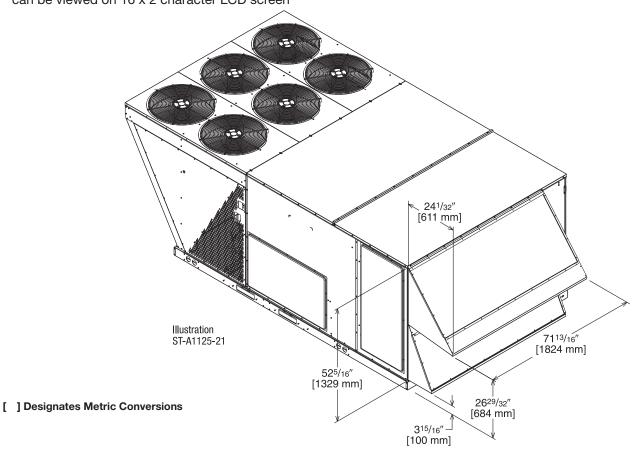
The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

10" [254 mm]

ECONOMIZERS


Use to Select Factory Installed Options Only

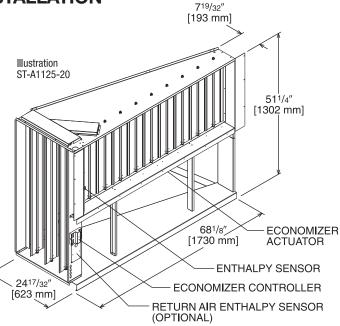
AXRD-PMCM3—Single Enthalpy (Outdoor) with DDC AXRD-SMCM3—Single Enthalpy (Outdoor) with Smoke Detector and DDC


RXRX-AV03 - Dual Enthalpy Upgrade Kit

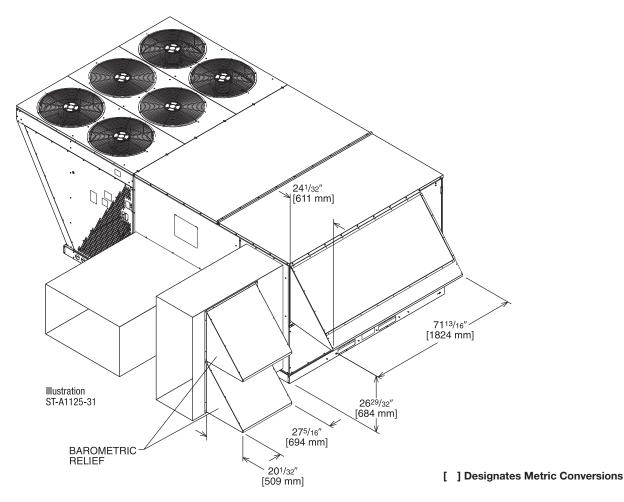
RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features **Honeywell** Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 character LCD screen

TOLERANCE ± .125

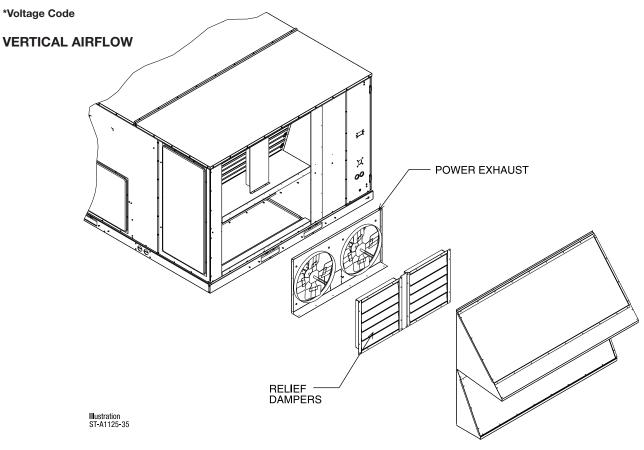


ECONOMIZER FOR HORIZONTAL DUCT INSTALLATIONField Installed Only


AXRD-RMCM3—Single Enthalpy (Outdoor) with DDC

RXRX-AV03 — Dual Enthalpy Upgrade Kit RXRX-AR02 — Wall-mounted CO₂ Sensor

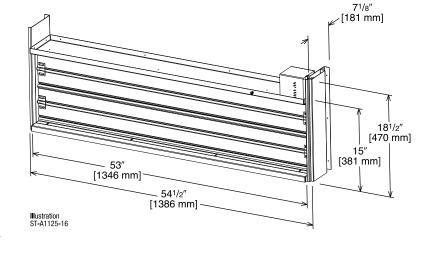
- Features **Honeywell** Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



TOLERANCE ± .125

POWER EXHAUST KIT FOR AXRD-PMCM3 & SMCM3 ECONOMIZERS

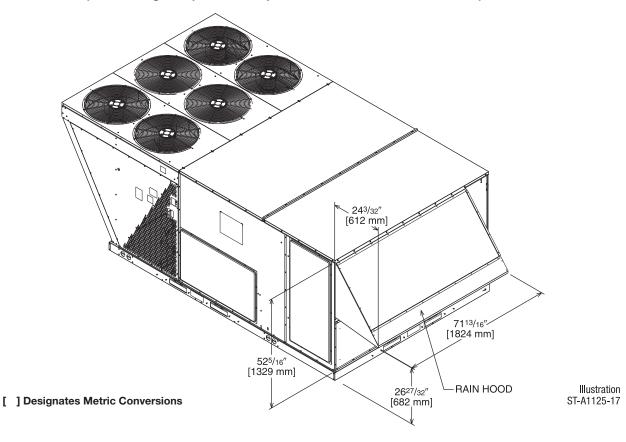
RXRX-BGF05 (C, D, or Y*)


Model No.	No. Volts		Phase	HP	Low Speed		High Speed ①		FLA	LRA
	of Fans	VUILS	riiasc	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4
RXRX-BGF05Y	2	575	1	0.75	4100 [1935]	850	5200 [2454]	1050	1.5	2.84

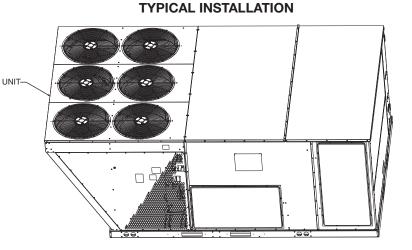
NOTES: ① Power exhaust is factory set on high speed motor tap. ② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

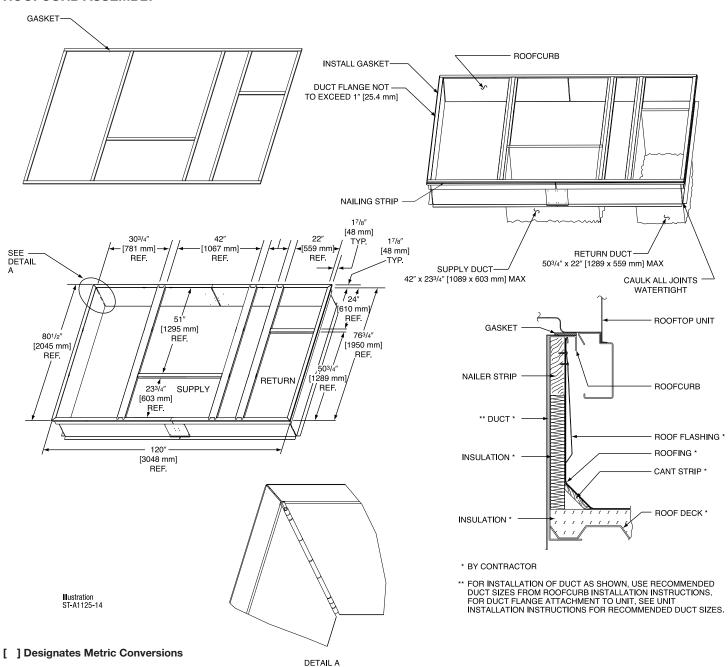
MOTORIZED DAMPER KIT RXRX-AW03 (Motor Kit for AXRF-KFA1) RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)


- Features **Honeywell** Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock.
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

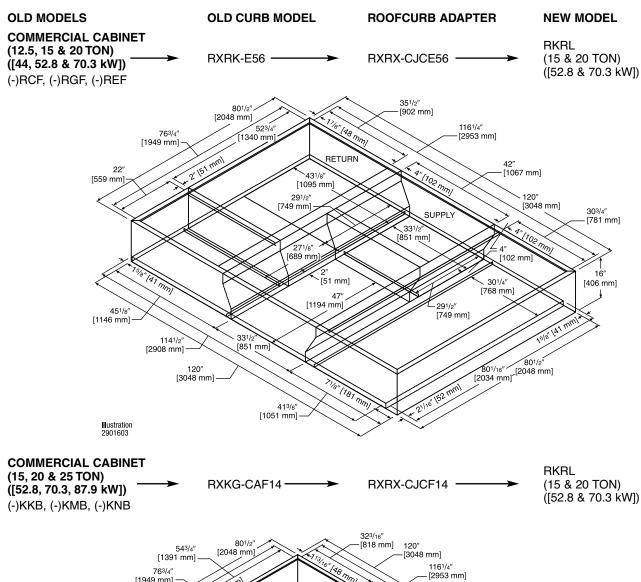
AXRF-KFA1 (Manual)

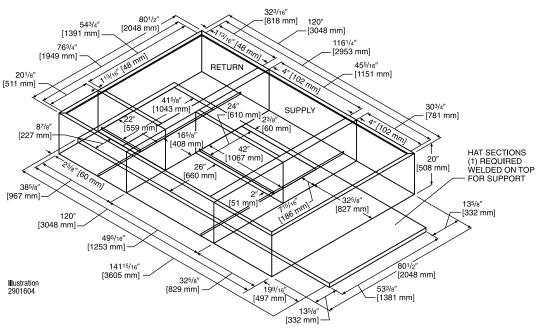

RXRX-AW03 (Motorized damper kit for manual fresh air damper)

RXRX-AW05 (Modulating damper kit with position feedback for AXRF-KFA1)

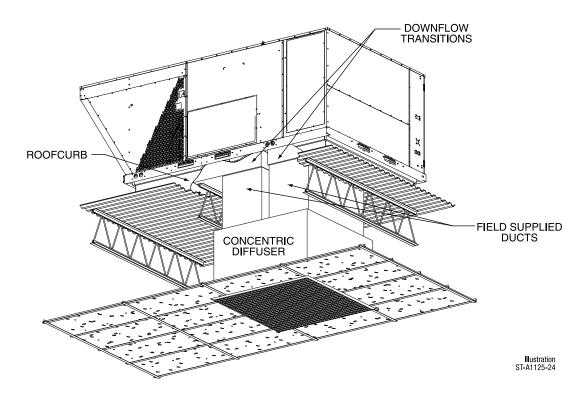


ROOFCURBS (Full Perimeter)

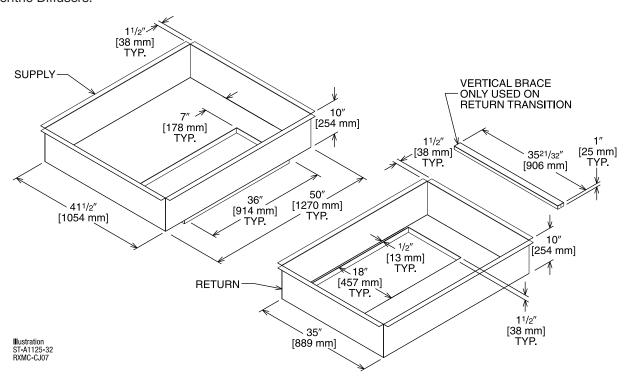

- Ruud's new roofcurb designs can be utilized on 15, 17.5, 20 and 25 ton [52.8, 61.5. 70.3 and 70.3 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.



ROOFCURB ASSEMBLY

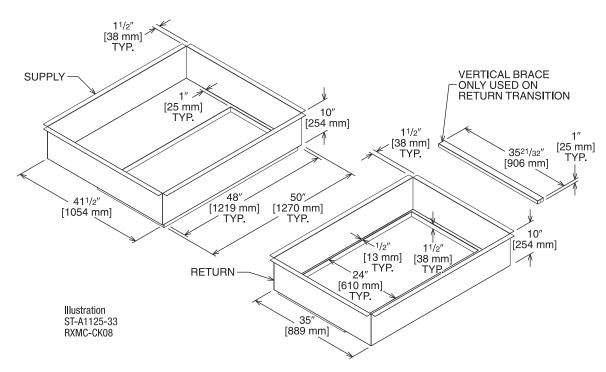


ROOFCURB ADAPTER

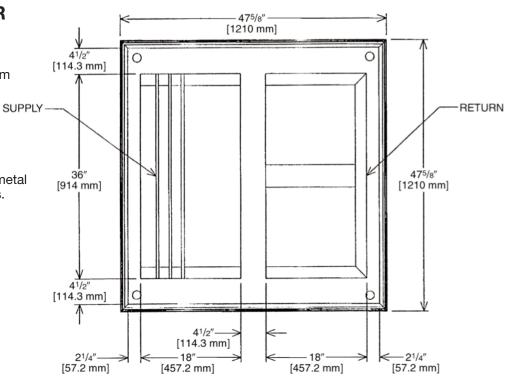

CONCENTRIC DIFFUSER APPLICATION

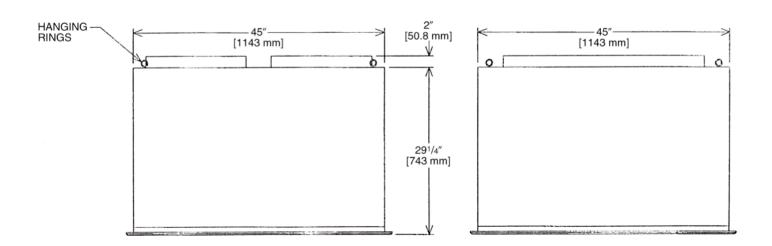
DOWNFLOW TRANSITION DRAWINGS

RXMC-CJ07 (15 Ton) [52.8 kW]


 Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers.

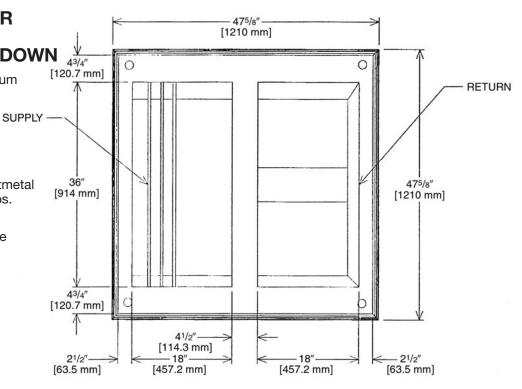
DOWNFLOW TRANSITION DRAWINGS (Cont.)

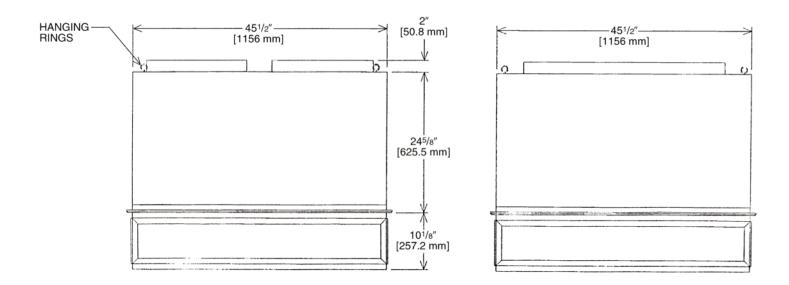

RXMC-CK08 (20 Ton) [70.3 kW]


■ Used with RXRN-AD86 Concentric Diffusers.

CONCENTRIC DIFFUSER RXRN-AD80 SERIES 15 TON [52.8 kW] FLUSH

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

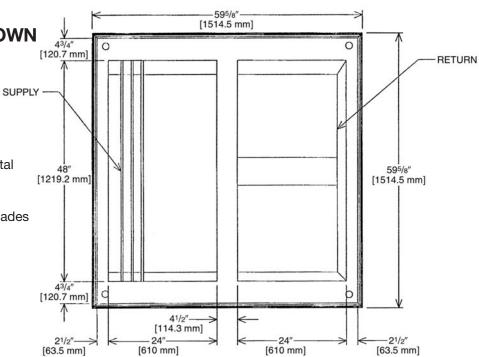

CONCENTRIC DIFFUSER SPECIFICATIONS

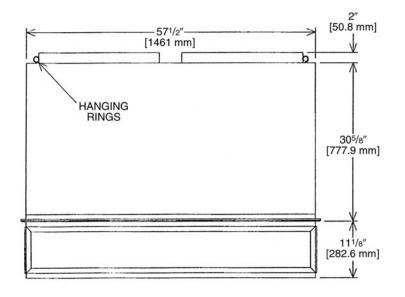

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD80	5600 [2643]	0.36	28-37	1000	2082
	5800 [2737]	0.39	29-38	1036	2156
	6000 [2832]	0.42	40-50	1071	2230
	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

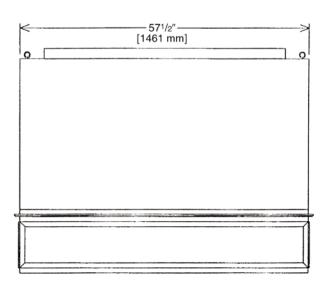
CONCENTRIC DIFFUSER RXRN-AD81 SERIES 15 TON [52.8 kW] STEP DOWN

 All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.


CONCENTRIC DIFFUSER SPECIFICATIONS


PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD81	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
	6000 [2832]	0.42	44-54	1022	1022
	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124


CONCENTRIC DIFFUSER RXRN-AD86 SERIES 20 TON [70.3 kW] STEP DOWN

All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
RXRN-AD86	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010

Guide Specifications RKRL-C/H 180 thru C/H300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute, www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

1. Thermostat must

- a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
- b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO₂ sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3, exhaust/ occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up sto 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- 9. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections.
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R-410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115° F (46° C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at \pm 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F / 16°C): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb. density, flexible fiberglass insulation, aluminum foil-face coated on the air side.
- 4. Base of unit shall have locations for thru-the-base gas and electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.

- c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection through the side of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Gas Connections:

- a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor and gas components (where applicable), shall have 1/4 turn latches.

23 81 19.13.I. Gas Heat

1. General

- a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
- b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
- c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
- d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor.
 - a. IFC board shall notify users of fault using an LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - a. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge aluminum coated steel for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes and vestibule plate.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motors and blowers
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.

- b. Shall be made from steel with a corrosion-resistant finish.
- c. Shall have permanently lubricated sealed bearings.
- d. Shall have inherent thermal overload protection.
- e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valves (TXV) with orifice type distributor.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.

2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.
- d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- e. Compressor shall be factory mounted on rubber grommets.
- f. Compressor motors shall have internal line break thermal and current overload protection.
- g. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Ruud will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor

3 Phase, Commercial ApplicationsFive (5) Years **Parts**

3 Phase, Commercial Applications.....One (1) Year

Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years

^{*}For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

In keeping with its policy of continuous progress and product improvement, Ruud reserves the right to make changes without notice.