

MODEL: RKNL-H Packaged Gas Electric Unit

FORM NO. RSC-854 REV.5

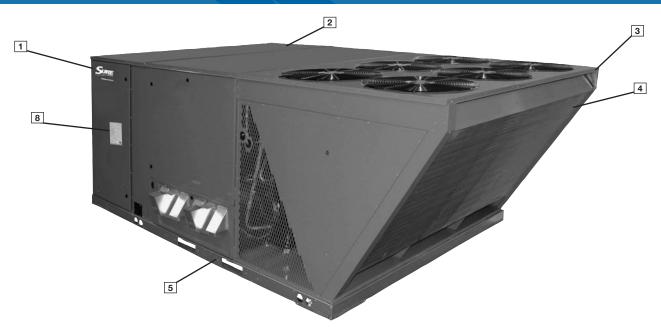
Sure Comfort® Commercial Packaged Gas Electric Unit

RKNL-H

- With ClearControl[™] and VFD Technology
- Nominal Sizes 15-25 Tons [52.8-87.9 kW]
- ASHRAE 90.1-2010 Compliant

Table of Contents

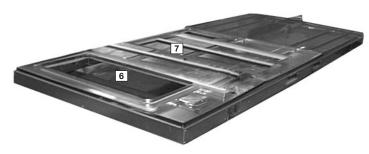
Unit Features & Benefits	3-8
Model Number Identification	<u>C</u>
Options	10
Selection Procedure	11
General Data	
RKNL-H	12-21
General Data Notes	22
Gross Systems Performance Data	
RKNL-H	23-25
Indoor Airflow Performance	
RKNL-H	26-33
Electrical Data	
RKNL-H	34-37
Dimensional Data	38-41
Accessories	42-56
Mechanical Specifications	57-63



RKNL-H STANDARD FEATURES INCLUDE:

- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and high-pressure protection.
- Dual stage compressors.
- Convertible airflow vertical downflow or horizontal sideflow.
- TXV refrigerant metering system on each circuit.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- · Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintaining high efficiencies.
- Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- Base pan with drawn supply and return opening for superior water management.
- · Forkable base rails for easy handling and lifting.
- · Single point electrical connections.

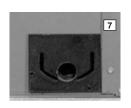
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve and direct spark ignition.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- · Colored and labeled wiring.
- Copper tube/Aluminum Fin coils. (Exception: C241 has microchannel condenser coils.)
- Factory Installed Direct Digital Control (DDC) and sensors which can connect to LonWorks™ or BACnet® BAS systems for remote monitoring and control.
- (-H) Models with Variable Frequency Drive (VFD) meet ASHRAE 90.1-2010 and California Title 24.
- MERV 8 & MERV 13 filters are available as an accessory.
- Standard Modbus interface.

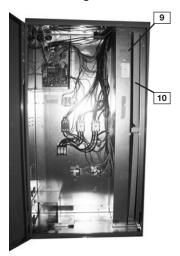

www.SureComfort.com ______ 3

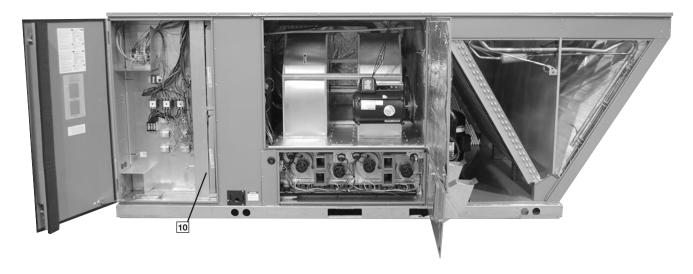
Sure Comfort Packaged equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Sure Comfort *Commercial Series™* label (1) identifies the brand to the customer.

The sheet-metal cabinet (2) uses nothing less than 20-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a top with a 1/8" drip lip (3), gasket-protected panels and screws. The slanted outdoor coil protects the coil from hail damage (4). Every Sure Comfort packaged unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of plastic that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-360 and other Sure Comfort-required reliability tests. Sure Comfort adheres to stringent ISO 9001:2015 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (8). Contractors can rest assured that when a Sure Comfort packaged unit arrives at the job, it is ready to go with a factory charge and quality checks.


Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large, toolless, hinged-access panel with 1/4 turn latches. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the con-

trol box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

There is a blower contactor and compressor contactor for each compressor.

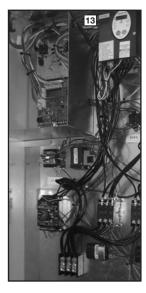
As part of the ClearControl™ system which allows real time monitoring and communication between rooftop units, the RKNL-H Packaged Gas Electric Unit has a Rooftop Unit

Controller (RTU-C) factory mounted and wired in the control panel. The RTU-C is a solid-state microprocessor-based control board that provides flexible control and extensive diagnostics for all unit functions. The RTU-C through proportional/integral control algorithms perform specific unit functions that

govern unit operation in response to: zone conditions, system temperatures, system pressures, ambient conditions and electrical inputs. The RTU-C features a 16 x 2 character LCD display and a five-button keypad for local configuration and direct diagnosis of the system. New features include a clogged filter switch (CFS), fan proving switch (FPS), return air temperature sensor (RAT), discharge air temperature sensor (DAT) and outdoor air temperature sensor (OAT). Freeze sensors (FS) are used in place of freezestats to allow measurement of refrigerant suction line temperatures. The RKNL-H Packaged Gas/Electric Unit with ClearControl™ is specifically designed to be applied in four distinct applications:

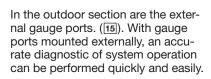
The RKNL-H is compatible with a third party building management system that supports the BACnet Application Specific Controller device profile, with the use of a field installed BACnet Communication Module. The BACnet Communication Module plugs into the unit RTU-C controller and allows communication between ClearControl™ and the BACnet MSTP or IP network. A zone sensor, a BACnet network zone sensor, a BACnet thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The BACnet Communication Module is compatible with MSTP EIA-485 daisy chain networks communicating at 38.4 bps. It is compatible with twisted pair, shielded cables.

The RKNL-H is compatible with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. This is accomplished with a field installed LonMark communication module. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between ClearControl™ and a LonWorks Network. A zone sensor, a LonTalk network zone sensor, or a LonTalk thermostat or DDC controller may be used to send the zone temperature or thermostat demands to the RTU-C. The LonMark Communication Module utilizes an FTT-10A free topology transceiver communicating at 78.8 kbps. It is compatible with Echelon qualified twisted pair cable, Belden 8471 or NEMA Level 4 cables. The Module can communicate up to 1640 ft. with no repeater. The LonWorks limit of 64 nodes per segment applies to this device.


The RKNL-H is compatible with a programmable 24 volt thermostat. Connections are made via conventional thermostat screw terminals. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

The RKNL-H is compatible with a zone sensor and mechanical or solid state time clock connected to the RTU-C. Extensive unit status and diagnostics are displayed on the LCD screen of the RTU-C.

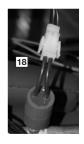
A factory or field installed Comfort Alert® module is available for power phase-monitoring protection and additional compressor diagnostics. The alarms can be displayed on the RTU-C display, through the (BAS) network, or connected to the "L-Terminal" of a thermostat for notification.


www.SureComfort.com ______ 5

-H models with factory installed VFD (13) (variable frequency drive) optimize energy usage year round by providing a lower speed for first stage cooling operation improving IEER's over the conventional constant fan system. Furthermore, operating in the constant fan mode at the reduced speed can use as little as 1/5th of the energy of a conventional constant fan system. Also, by operating at a lower speed on first stage cooling up to 51% more moisture is removed improving comfort during low load operation. The VFD equipped units meet California Title 24 and ASHRAE 90.1-2010 requirements for multi blower speed control. VFD also ramps up to the desire speed reducing stress on the supply fan components and reducing the noise from sudden inrush of air. Because the

airflow is cut in half during first stage cooling and constant fan operation, noise is much less during these modes of operation.


For added convenience in the field, a factory-installed convenience outlet and disconnect (14) are available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for lowvoltage termination and then reinstalled. The high-voltage connection is terminated at the high-voltage terminal block. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.



The blower compartment is to the right of the control box and can be accessed by 1/4 turn latches. To allow easy maintenance of the blower assembly, the entire assembly

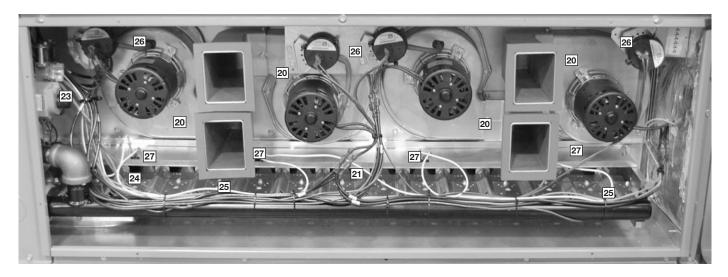
easily slides out by removing four #10 screws from the blower assembly. The adjustable motor pulley ([16]) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 1 to 6 turns open. Where the demands for the job require high static, Sure Comfort has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (17) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of troublefree operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.

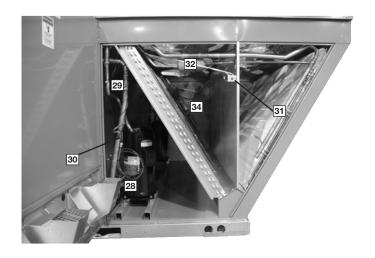
Also inside the blower compartment are the optional low-ambient controls (18). The low-ambient controls allow for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. Use of polarized plugs and schrader fittings allow for easy field or factory installation. The freeze sensor clips on the suction line near the evaporator outlet. The freeze sensor protects the compressor if the evaporator coil gets too cold (below freezing) due to low airflow and allows monitoring of the suction line temper

and allows monitoring of the suction line temperature on the controller display.

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (19) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.


The furnace compartment contains the latest furnace technology on the market. The draft inducers (20) draw the flame from the Sure Comfort exclusive in-shot burners (21) into the aluminized tubular heat exchanger (22) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipped with a two-stage gas valve (23), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stoichiometric burn at each stage.


The direct spark igniter (24) assures reliable ignition in the most adverse conditions. This is coupled with remote flame sense (25) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

- Pressures switches (26) to assure adequate combustion airflow before ignition.
- Rollout switches (27) to assure no obstruction or cracks in the heat exchanger.
- A limit device that protects the furnace from over-temperature problems.

www.SureComfort.com ______ 7

The compressor compartment houses the heartbeat of the unit. The scroll compressor (28) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (29) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage.

The low-pressure switches (30) and high-pressure switches (31) are mounted on the appropriate refrigerant lines in the condenser section. The high-pressure switch will shut off the compressors if pressures exceeding 610 PSIG are detected as may occur if the outdoor fan motor fails. The low-pressure switches shut off the compressors if low pressure is detected due to loss of refrigerant charge. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs allow for easy field inspection and repair.

Each unit comes standard with filter dryer (32). The condenser fan motor (33) can easily be accessed and maintained by removing the protective fan grille. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit. The outdoor coil uses the latest enhanced fin design (34) for the most effective method of heat transfer. The outdoor coil is slanted to protect it from Mother Nature.

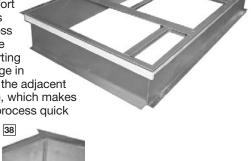
Each unit is designed for both downflow or horizontal applications (35) for job configuration flexibility. The return air

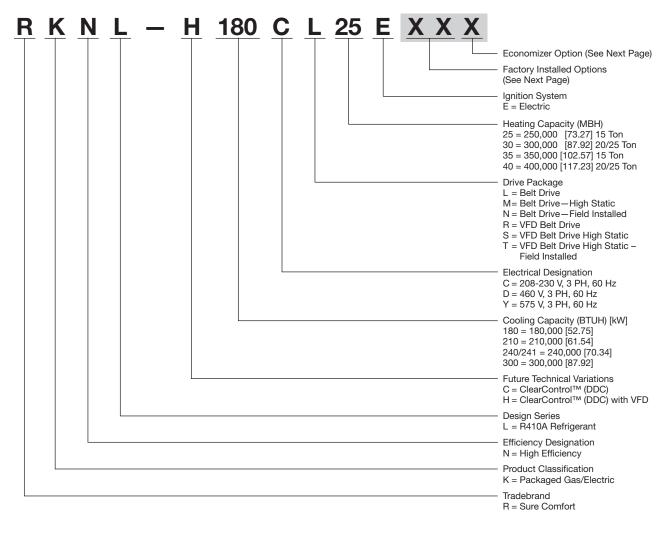
compartment can also contain an economizer (36).

Three models exists; two for down-

flow applications (a downflow economizer with factory installed smoke detector in the return section is available), and one for horizontal applications. Each unit is pre-wired for the economizer to allow quick plug-in installation. The downflow economizer is also available as a factory-installed option. Power Exhaust is easily field-installed. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage

adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. The power exhaust is housed in the barometric relief opening and is easily


slipped in with a plug-in assembly. The wire harness to the economizer also has accommodations for a smoke detector.


The damper minimum position, actual damper position, power exhaust on/off setpoint, mixed air temperature limit setpoint and Demand Controlled Ventilation (DCV) setpoint can be read and adjusted at the unit controller display or remotely through a network connection.

The Space CO₂ level, mixed air temperature, and Economizer Status (Free Cooling Available, Single or Dual Enthalpy) can be read at the unit controller display or remotely through a network connection. Economizer Faults will trigger a network Alarm and can be read at the unit controller display

or remotely through a network connection.

The Sure Comfort roofcurb (37) is made for toolless assembly at the jobsite by inserting a pin into a hinge in each corner of the adjacent curb sides (38), which makes the assembly process quick and easy.

[] Designates Metric Conversions

www.SureComfort.com _____

FACTORY INSTALLED OPTION CODES FOR RKNL-H (15-25 TON) [52.8-87.9 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Comfort Alert
AA			NO OPTIONS	
AD	Х			
AJ		Х		
AH			x	
AR				Х
BF	Х		x	
BG	Х	X		
CY		X	X	X
JD	X			X
JB		X	х	
KA	Х	X		Х
DP	Х	X	Х	Х

[&]quot;x" indicates factory installed option.

ECONOMIZER SELECTION FOR RKNL-H (15-25 TON) [52.8-87.9 kW]

Option Code	No Economizer	DDC Single Enthalpy Economizer* With Barometric Relief	DDC Single Enthalpy Economizer* With Barometric Relief and Smoke Detector
А	Х		
Н		X	
J			X

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Example: RKNL-H240CL40E $\underline{\textbf{XX}}$ X (where $\underline{\textbf{XX}}$ is factory installed option)

Example: No Options

RKNL-H240CL40E

Example: No option with factory installed economizer

RKNL-H240CL40EAAH

Example: Options with low ambient and comfort alert, unwired convenience outlet, unfused service disconnect, and stainless steel heat exchanger with no factory installed economizer

RKNL-H240CL40ECYA

Example: Options same as above with factory installed economizer

RKNL-H240CL40ECYJ

^{*}Downflow economizer only.

To select an RKNL-H Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example: Voltage-208/240V - 3 Phase - 60 Hz Total Cooling Capacity -205,000 BTUH [60.0 kW] Sensible Cooling Capacity-155,000 BTUH [45.4 kW] 235,000 BTUH [68.8 kW] Heating Capacity -*Condenser Entering Air-95°F [35.0°C] DB *Evaporator Mixed Air Entering-65°F [18.3°C] WB 78°F [25.6°C] DB *Indoor Air Flow (vertical) --7200 CFM [3398 L/s] *External Static Pressure-0.70 in. WG [.17 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 20 ton [70.3 kW] unit, enter cooling performance table at 95°F [35.0°C] DB condenser inlet air. Interpolate between 63°F [17.2°C] WB and 67°F [19.4°C] to determine total and sensible capacity and power input for 65°F [18.3°C] WB evaporator inlet air at 7725 CFM [3645 L/s] indoor air flow (table basis):

Total Cooling Capacity = 238,250 BTUH [69.76 kW] Sensible Cooling Capacity = 192,550 BTUH [56.38 kW] Power Input (Compressor and Cond. Fans) = 18,200 watts

Use formula in note ① to determine sensible capacity at 78°F [25.6°C] DB evaporator entering air:

 $192,550 + (1.10 \times 7,200 \times (1 - 0.11) \times (78 - 80))$ Sensible Cooling Capacity = 178,452 BTUH [52.25 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 7200 CFM [3398 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = $238,250 \times 0.99 = 235,868$ BTUH [69.06 kW] Sensible Capacity = $178,452 \times 0.96 = 171,314$ BTUH [50.16 kW] Power Input = $18,200 \times 0.99 = 18,018$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 7200 CFM [3398 L/s]. Total ESP (external static pressure) per the spec of 0.70 in. WG [.17 kPa] includes the system duct and grilles. Add from the table "Component Air Resistance," 0.01 in. WG [.00 kPa] for wet coil, 0.08 in. WG [.02 kPa] for downflow air flow, for a total selection static pressure of 0.79 (0.8) in. WG [.20 kPa], and determine:

RPM = 739 WATTS = 2,862 DRIVE = L (standard 5 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

2,862 x 3.412 = 9,765 BTUH [2.86 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 235,868 - 9,765 = 226,103 BTUH [66.21 kW] Net Sensible Capacity = 171,314 - 9,765 = 161,549 BTUH [47.30 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 18,018 (step 3) + 2,862 (step 4) = 20,880 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{226,103}{20,880} = 10.83$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 243,000 BTUH [71.2 kW]

9. CHOOSE MODEL RKNL-H240CL30E.

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

[] Designates Metric Conversions

www.SureComfort.com ______ 11

Model RKNL- Series (with VFD)	H180CR25E	H180CR35E	H180CS25E	H180CS35E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER/SEER ^B	10.8	10.8	10.8	10.8
Nominal CFM/AHRI Rated CFM [L/s]	14	14	14	14
AHRI Net Cooling Capacity Btu [kW]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
Net Sensible Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Latent Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]
IEER¢	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]
Net System Power kW	15.93	15.93	15.93	15.93
Heating Performance (Gas) ^D				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.5
Heating Output Btu [kW] (1st Stage / 2nd Stage)	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.0
Temperature Rise Range °F [°C] (1st Stage / 2nd Stage)	15-45 [8.3-25] / 30-60 [16.7-33.3] /	15-45 [8.3-25] / 30-60 [16.7-33.3] /	15-45 [8.3-25] 30-60 [16.7-33.3]	15-45 [8.3-25] 30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	. ,			. ,
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]
Weights				
Net Weight lbs. [kg]	1958 [888]	1971 [894]	1987 [901]	2000 [907]
Ship Weight lbs. [kg]	2084 [945]	2097 [951]	2113 [958]	2126 [964]
See Page 22 for Notes.	2007 [070]	200. [001]		nates Metric Conversio

See Page 22 for Notes.

Model RKNL- Series (with VFD)	H180DR25E	H180DR35E	H180DS25E	H180DS35E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]	188,000 [53.47]
EER	10.8	10.8	10.8	10.8
IEER B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]	6000/5900 [2831/2784]
AHRI Net Cooling Capacity Btu [kW]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]	172,000 [48.92]
Net Sensible Capacity Btu [kW]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]	125,700 [35.75]
Net Latent Capacity Btu [kW]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]	46,300 [13.17]
Net System Power kW	15.93	15.93	15.93	15.93
Heating Performance (Gas) ^C				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55
Heating Output Btu [kW] (1st Stage / 2nd Stage				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	30-60 [16.7-33.3] /	15-45 [8.3-25] /	30-60 [16.7-33.3] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	30-60 [16.7-33.3]	15-45 [8.3-25]	30-60 [16.7-33.3]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	16000 [7550]	16000 [7550]	16000 [7550]	16000 [7550]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	3	3	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	56	56	184	184
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]	205/211 [5812/5982]
Weights				
Net Weight lbs. [kg]	1958 [888]	1971 [894]	1987 [901]	2000 [907]
Ship Weight lbs. [kg]	2084 [945]	2097 [951]	2113 [958]	2126 [964]
See Page 22 for Notes.			[] Desig	nates Metric Conversions

www.SureComfort.com

NOM. SIZES 15-25 TONS [52.8-87.9 kW] MODELS

Model RKNL- Series (with VFD)	H210CR25E	H210CR35E	
Cooling Performance ^A			CONTINUED
Gross Cooling Capacity Btu [kW]	212,000 [60.30]	212,000 [60.30]	
EER	10.8	10.8	
IEER ^B	14	14	
Nominal CFM/AHRI Rated CFM [L/s]	7000/6750 [3303/3185]	7000/6750 [3303/3185]	
AHRI Net Cooling Capacity Btu [kW]	200,000 [56.88]	200,000 [56.88]	
Net Sensible Capacity Btu [kW]	150,900 [42.91]	150,900 [42.91]	
Net Latent Capacity Btu [kW]	49,100 [13.96]	49,100 [13.96]	
Net System Power kW	18.52	18.52	
leating Performance (Gas) ^C			
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	
Heating Output Btu [kW] (1st Stage / 2nd Stage)			
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	81	
No. Burners	10	14	
No. Stages	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	
Compressor			
No./Type	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB) ^D	91	91	
Outdoor Coil—Fin Type	Louvered	Louvered	
Tube Type	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	
ndoor Coil—Fin Type	Louvered	Louvered	
Tube Type	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	
Refrigerant Control	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	Propeller	
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	
Drive Type/No. Speeds	4/24 [003:0] Direct/1	4/24 [009.0] Direct/1	
		14800 [6984]	
CFM [L/s]	14800 [6984] 4 at 1/3 HP		
No. Motors/HP		4 at 1/3 HP	
Motor RPM	1075	1075	
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	
No. Motors	1	1	
Motor HP	3	3	
Motor RPM	1725	1725	
Motor Frame Size	56	56	
ilter—Type	Disposable	Disposable	
Furnished	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	294/302 [8335/8562]	294/302 [8335/8562]	
Veights			
Net Weight lbs. [kg]	2145 [973]	2158 [979]	
Ship Weight lbs. [kg]	2272 [1031]	2285 [1036]	

Model RKNL- Series (with VFD)	H210CS25E	H210CS35E	H210DR25E	H210DR35E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	212,000 [60.30]	212,000 [60.30]	212,000 [60.30]	212,000 [60.30]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	7000/6750 [3303/3185]	7000/6750 [3303/3185]	7000/6750 [3303/3185]	7000/6750 [3303/3185]
AHRI Net Cooling Capacity Btu [kW]	200,000 [56.88]	200,000 [56.88]	200,000 [56.88]	200,000 [56.88]
Net Sensible Capacity Btu [kW]	150,900 [42.91]	150,900 [42.91]	150,900 [42.91]	150,900 [42.91]
Net Latent Capacity Btu [kW]	49,100 [13.96]	49,100 [13.96]	49,100 [13.96]	49,100 [13.96]
Net System Power kW	18.52	18.52	18.52	18.52
Heating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125.000/250.000 [36.62/73.25]	175.000/350.000 [51.27/102.55]	1 125.000/250.000 [36.62/73.25]	175.000/350.000 [51.27/102.5
Heating Output Btu [kW] (1st Stage / 2nd Stage				•
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	10	14	10	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]	4/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	14800 [6984]	14800 [6984]	14800 [6984]	14800 [6984]
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP	4 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	onigie / Multiple	onigie / wunipie	onigie / Munipie	onigie / ividitipie
No. Motors Motor HP	1 5	l E	3	ا ه
		5		3
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes (0)0v0Ev00 [E1v00EvE00]	Yes (0)0005000 [E100050500]	Yes (0)0000500001	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]	294/302 [8335/8562]
Weights	0474 (000)	0407 [000]	04.45 (070)	0450 (070)
Net Weight lbs. [kg]	2174 [986]	2187 [992]	2145 [973]	2158 [979]
Ship Weight lbs. [kg]	2301 [1044]	2314 [1050]	2272 [1031]	2285 [1036]
See Page 22 for Notes.			[] Desig	nates Metric Conversion

www.SureComfort.com 15

Model RKNL- Series (with VFD)	H210D\$25E	H210D\$35E	
Cooling Performance ^A			CONTINUED
Gross Cooling Capacity Btu [kW]	212,000 [60.30]	212,000 [60.30]	
EER	10.8	10.8	
IEER ^B	14	14	
Nominal CFM/AHRI Rated CFM [L/s]	7000/6750 [3303/3185]	7000/6750 [3303/3185]	
AHRI Net Cooling Capacity Btu [kW]	200,000 [56.88]	200,000 [56.88]	
Net Sensible Capacity Btu [kW]	150,900 [42.91]	150,900 [42.91]	
Net Latent Capacity Btu [kW]	49,100 [13.96]	49,100 [13.96]	
Net System Power kW	18.52	18.52	
leating Performance (Gas) ^C			
Heating Input Btu [kW] (1st Stage / 2nd Stage)	125,000/250,000 [36.62/73.25]	175,000/350,000 [51.27/102.55]	
Heating Output Btu [kW] (1st Stage / 2nd Stage)	101,250/202,500 [29.67/59.33]	141,750/283,500 [41.53/83.06]	
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	
Steady State Efficiency (%)	81	81	
No. Burners	10	14	
No. Stages	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	
Compressor	[1	11	
No./Type	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB)D	91	91	
outdoor Coil—Fin Type	Louvered	Louvered	
Tube Type	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	
ndoor Coil—Fin Type	Louvered	Louvered	
Tube Type	Rifled	Rifled	
**			
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	
Refrigerant Control	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	Propeller	
No. Used/Diameter in. [mm]	4/24 [609.6]	4/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	
CFM [L/s]	14800 [6984]	14800 [6984]	
No. Motors/HP	4 at 1/3 HP	4 at 1/3 HP	
Motor RPM	1075	1075	
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	
No. Motors	1	1	
Motor HP	5	5	
Motor RPM	1725	1725	
Motor Frame Size	184	184	
ilter—Type	Disposable	Disposable	
Furnished	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	294/302 [8335/8562]	294/302 [8335/8562]	
Veights	20 " 002 [0000 0002]	20 11002 [000010002]	
Net Weight Ibs. [kg]	2174 [986]	2187 [992]	
Ship Weight lbs. [kg]	2301 [1044]	2314 [1050]	
omp moight hos. [ng]	2001 [1044]	2017 [1000]	[] Designates Metric Conversion

Model RKNL- Series (with VFD)	H240CR30E	H240CR40E	H240CS30E	H240CS40E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
Heating Performance (Gas) ^C				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117 2]	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
• •				
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	5	5	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	184	213	213
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Weights				
Net Weight lbs. [kg]	2289 [1038]	2303 [1045]	2327 [1056]	2341 [1062]
Ship Weight lbs. [kg]	2415 [1095]	2430 [1102]	2453 [1113]	2468 [1119]
See Page 22 for Notes.	0 [.000]	2100[1102]		nates Metric Conversio

www.SureComfort.com _______17

Model RKNL- Series (with VFD)	H240CT30E	H240CT40E	H240DR30E	H240DR40E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
Heating Performance (Gas) ^c				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2
Heating Output Btu [kW] (1st Stage / 2nd Stage)	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93]	121,500/243,000 [35.6/71.2]	162,000/324,000 [47.47/94.93
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	7 1/2	5	5
Motor RPM	1725	1725	1725	1725
Motor Frame Size	213	213	184	184
-ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Weights	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Net Weight Ibs. [kg]	2325 [1055]	2340 [1061]	2289 [1038]	2303 [1045]
Ship Weight lbs. [kg]	2452 [1112]	2466 [1119]	2415 [1095]	2430 [1102]
Cimp Troight iso. [ng]	2.02 [1112]	2100 [1110]	2110 [1000]	2.00 [1102]

See Page 22 for Notes.

Model RKNL- Series (with VFD)	H240DS30E	H240DS40E	H240DT30E	H240DT40E
Cooling Performance ^A				CONTINUED
Gross Cooling Capacity Btu [kW]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]	244,000 [69.40]
EER	10.8	10.8	10.8	10.8
IEER ^B	14	14	14	14
Nominal CFM/AHRI Rated CFM [L/s]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]	8000/7725 [3775/3645]
AHRI Net Cooling Capacity Btu [kW]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]	228,000 [64.85]
Net Sensible Capacity Btu [kW]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]	165,600 [47.10]
Net Latent Capacity Btu [kW]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]	62,400 [17.75]
Net System Power kW	21.11	21.11	21.11	21.11
Heating Performance (Gas) ^C	21.11	21.11	21.11	21.11
Heating Input Btu [kW] (1st Stage / 2nd Stage)	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117 2]	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117
Heating Output Btu [kW] (1st Stage / 2nd Stage)				
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	25-55 [13.9-30.6] /	15-45 [8.3-25] /	25-55 [13.9-30.6] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	25-55 [13.9-30.6]	15-45 [8.3-25]	25-55 [13.9-30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	12	14	12	14
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor	0.70 [10]	0.70 [10]	0.70 [10]	0.70 [10]
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ^D	91	91	91	91
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
		3 / 13 [5]	3 / 13 [5]	
Rows / FPI [FPcm]	3 / 13 [5]			3 / 13 [5] TX Valves
Refrigerant Control	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	1	1	1	1
Motor HP	7 1/2	7 1/2	7 1/2	7 1/2
Motor RPM	1725	1725	1725	1725
Motor Frame Size	184	213	184	213
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]	402/331 [11397/9384]
Weights	<u> </u>			<u> </u>
			0005 [4055]	0040 [4004]
Net Weight lbs. [kg]	2327 [1056]	2341 [1062]	2325 [1055]	2340 [1061]

www.SureComfort.com _______19

Model RKNL- Series (with VFD)	H300CR40E	H300CS30E	H300CS40E	H300DR30E
Cooling Performance ^A	HOUGHITUL	110000000	110000040E	CONTINUED
Gross Cooling Capacity Btu [kW]	312000 [88.74]	312000 [88.74]	312000 [88.74]	312000 [88.74]
EER/SEER ^B	9.8	9.8	9.8	9.8
Nominal CFM/AHRI Rated CFM [L/s]	13	13	13	13
AHRI Net Cooling Capacity Btu [kW]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]
Net Sensible Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]
Net Latent Capacity Btu [kW]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]	206,100 [60.40]
IEERC	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]
Net System Power kW	29.18	79,900 [23.41] 29.18	79,900 [23.41] 29.18	79,900 [23.41] 29.18
Heating Performance (Gas) ^D	23.10	23.10	23.10	29.10
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200 000/400 000 [58 6/117 2]	150,000/300,000 [43.95/87.9]	200,000/400,000 [58.6/117.2]	150 000/300 000 [//3 05/87]
Heating Output Btu [kW] (1st Stage / 2nd Stage)			162,000/324,000 [47.47/94.93]	
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	10-40 [5.6-22.2] /	25-45 [13.9-25] /	10-40 [5.6-22.2] /
(1st Stage / 2nd Stage)	15-45 [8.3-25]	10-40 [5.6-22.2]	15-45 [8.3-25]	10-40 [5.6-22.2]
Steady State Efficiency (%)	81	81	81	81
No. Burners	14	12	14	12
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁵	92	92	92	92
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]
Drive Type/No. Speeds	0/24 [003.0] Direct/1	0/24 [003.0] Direct/1	0/24 [003.0] Direct/1	0/24 [003.0] Direct/1
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	19800 [9344]
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP
Motor RPM	1075	1075	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	Single / Multiple
No. Motors	Siligle / Multiple	Sillyle / Multiple	Sillyle / Multiple	Siligle / Multiple
Motor HP	7 1/2	•		7 1/2
Motor RPM	7 1/2 1725	10 1725	10 1725	7 1/2 1725
		1725	1725 215	
Motor Frame Size	213	215		213
Filter—Type Furnished	Disposable	Disposable	Disposable	Disposable
Furnished (NO.) Size Recommended in [mm v mm v mm]	Yes (9)2×25×20 (51×625×609)	Yes (8)2y25y20 [51y625y508]	Yes (9)2y25y20 (51y625y509)	Yes (9)2y25y20 [51y625y509]
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]
Weights	0.400 7.40003	0000 71000	0440 515553	0000 710007
Net Weight lbs. [kg]	2402 [1090]	2399 [1088]	2413 [1095]	2388 [1083]
Ship Weight lbs. [kg]	2529 [1147]	2525 [1145]	2540 [1152]	2514 [1140]

See Page 22 for Notes.

Model RKNL- Series (with VFD)	H300DR40E	H300DS30E	H300D\$40E	
Cooling Performance ^A				
Gross Cooling Capacity Btu [kW]	312000 [88.74]	312000 [88.74]	312000 [88.74]	
EER	9.8	9.8	9.8	
IEER ^B	13	13	13	
Nominal CFM/AHRI Rated CFM [L/s]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	10000/8350 [4719/3940]	
AHRI Net Cooling Capacity Btu [kW]	286,000 [81.34]	286,000 [81.34]	286,000 [81.34]	
Net Sensible Capacity Btu [kW]	206100 [60.40]	206100 [60.40]	206100 [60.40]	
Net Latent Capacity Btu [kW]	79,900 [23.41]	79,900 [23.41]	79,900 [23.41]	
Net System Power kW	29.18	29.18	29.18	
Heating Performance (Gas) ^c	20.10	20.10	20.10	
Heating Input Btu [kW] (1st Stage / 2nd Stage)	200 000/400 000 [58 6/117 2]	150 000/300 000 [43 95/87 9]	200 000/400 000 [58 6/117 2]	
Heating Output Btu [kW] (1st Stage / 2nd Stage)	•	-		
Temperature Rise Range °F [°C]	15-45 [8.3-25] /	10-40 [5.6-22.2] /	15-45 [8.3-25] /	
(1st Stage / 2nd Stage)	15-45 [8.3-25]	10-40 [5.6-22.2]	15-45 [8.3-25]	
Steady State Efficiency (%)	81	81	81	
No. Burners	14	12	14	
No. Stages	2	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	
Compressor	00 [0]	0 0 [.0]	[]	
No./Type	2/Scroll	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB) ^D	92	92	92	
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	53.3 [4.95]	53.3 [4.95]	53.3 [4.95]	
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	26.67 [2.48]	26.67 [2.48]	26.67 [2.48]	
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	
Refrigerant Control	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	6/24 [609.6]	6/24 [609.6]	6/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	
CFM [L/s]	19800 [9344]	19800 [9344]	19800 [9344]	
No. Motors/HP	6 at 1/3 HP	6 at 1/3 HP	6 at 1/3 HP	
Motor RPM	1075	1075	1075	
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	2/18x9 [457x229]	2/18x9 [457x229]	2/18x9 [457x229]	
Drive Type	Belt (Adjustable)	Belt (Adjustable)	Belt (Adjustable)	
No. Speeds (Standard / VFD)	Single / Multiple	Single / Multiple	Single / Multiple	
No. Motors	1	1	1	
Motor HP	7 1/2	10	10	
Motor RPM	1725	1725	1725	
Motor Frame Size	213	215	215	
Filter—Type	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	
(NO.) Size Recommended in. [mm x mm x mm]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	(8)2x25x20 [51x635x508]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	339/357 [9611/10121]	339/357 [9611/10121]	339/357 [9611/10121]	
Weights	. [1.)	fr	, J	
Net Weight lbs. [kg]	2402 [1090]	2399 [1088]	2413 [1095]	
Ship Weight lbs. [kg]	2529 [1147]	2525 [1145]	2540 [1152]	
Sp . roight ibo. [ng]	2020 [1171]	2020 [1140]	[] Designates Me	

See Page 22 for Notes.

NOTES:

- A. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- B. EER and Integrated Energy Efficiency Ratio (IEER) is rated at AHRI conditions in accordance with AHRI Standard 340/360.
- C. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- D. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.
- E. 25 ton model (C300) is outside the scope of AHRI Standard 340/360.

GROSS SYSTEMS PERFORMANCE DATA-H180

				EN	ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CF	M [L/s]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]	7200 [3398]	5900 [2784]	4800 [2265]
		DR ①	.04	.08	.13	.04	.08	.13	.04	.08	.13
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	226.5 [66.4] 148.8 [43.6] 12.6	217.8 [63.8] 126.2 [37.0] 12.3	210.4 [61.7] 108.5 [31.8] 12.1	214.3 [62.8] 174.1 [51.0] 12.4	206.0 [60.4] 149.6 [43.9] 12.2	199.0 [58.3] 130.2 [38.2] 12.0	206.3 [60.5] 193.4 [56.7] 12.2	198.4 [58.1] 167.5 [49.1] 12.0	191.7 [56.2] 146.8 [43.0] 11.8
Ü T D O	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	222.2 [65.1] 146.6 [43.0] 13.1	213.6 [62.6] 124.3 [36.4] 12.9	206.4 [60.5] 106.9 [31.3] 12.7	209.9 [61.5] 171.9 [50.4] 13.0	201.8 [59.1] 147.8 [43.3] 12.7	195.0 [57.1] 128.7 [37.7] 12.5	202.0 [59.2] 191.3 [56.1] 12.8	194.2 [56.9] 165.7 [48.6] 12.6	187.6 [55.0] 145.3 [42.6] 12.4
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power		209.1 [61.3] 122.3 [35.9] 13.5	202.0 [59.2] 105.2 [30.8] 13.3	205.3 [60.2] 169.5 [49.7] 13.6	197.3 [57.8] 145.7 [42.7] 13.4	190.7 [55.9] 127.0 [37.2] 13.1	197.3 [57.8] 188.8 [55.3] 13.5	189.7 [55.6] 163.6 [48.0] 13.2	183.3 [53.7] 143.5 [42.1] 13.0
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	212.5 [62.3] 141.4 [41.5] 14.5	204.3 [59.9] 120.0 [35.2] 14.2	197.4 [57.9] 103.3 [30.3] 14.0	200.2 [58.7] 166.7 [48.9] 14.3	192.5 [56.4] 143.5 [42.1] 14.0	186.0 [54.5] 125.1 [36.7] 13.8	192.3 [56.4] 186.2 [54.6] 14.2	184.9 [54.2] 161.4 [47.3] 13.9	178.6 [52.3] 141.6 [41.5] 13.7
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	207.2 [60.7] 138.5 [40.6] 15.2	199.2 [58.4] 117.6 [34.5] 14.9	192.4 [56.4] 101.2 [29.7] 14.7	194.9 [57.1] 163.9 [48.0] 15.1	187.4 [54.9] 141.1 [41.4] 14.8	181.0 [53.0] 123.0 [36.1] 14.5	187.0 [54.8] 183.3 [53.7] 14.9	179.8 [52.7] 159.0 [46.6] 14.6	173.7 [50.9] 139.6 [40.9] 14.4
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	201.5 [59.1] 135.4 [39.7] 16.0	193.7 [56.8] 115.0 [33.7] 15.7	187.2 [54.9] 99.1 [29.1] 15.4	189.2 [55.4] 160.7 [47.1] 15.9	181.9 [53.3] 138.4 [40.6] 15.6	175.8 [51.5] 120.8 [35.4] 15.3	181.3 [53.1] 180.1 [52.8] 15.7	174.3 [51.1] 156.3 [45.8] 15.4	168.4 [49.4] 137.3 [40.2] 15.1
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	195.5 [57.3] 132.0 [38.7] 16.9	188.0 [55.1] 112.2 [32.9] 16.5	181.6 [53.2] 96.6 [28.3] 16.3	183.2 [53.7] 157.3 [46.1] 16.7	176.2 [51.6] 135.6 [39.8] 16.4	170.2 [49.9] 118.3 [34.7] 16.1	175.3 [51.4] 175.3 [51.4] 16.5	168.5 [49.4] 153.4 [45.0] 16.2	162.8 [47.7] 134.8 [39.5] 16.0
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	189.2 [55.4] 128.4 [37.6] 17.8	181.9 [53.3] 109.1 [32.0] 17.4	175.7 [51.5] 93.9 [27.5] 17.1	176.9 [51.8] 153.7 [45.1] 17.6	170.1 [49.9] 132.6 [38.9] 17.3	164.3 [48.2] 115.8 [33.9] 17.0	169.0 [49.5] 169.0 [49.5] 17.5	162.5 [47.6] 150.5 [44.1] 17.1	156.9 [46.0] 132.3 [38.8] 16.8
ا ن	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	182.5 [53.5] 124.5 [36.5] 18.7	175.5 [51.4] 105.9 [31.0] 18.4	169.5 [49.7] 91.2 [26.7] 18.1	170.2 [49.9] 149.9 [43.9] 18.6	163.7 [48.0] 129.4 [37.9] 18.2	158.1 [46.3] 113.0 [33.1] 17.9	162.3 [47.6] 162.3 [47.6] 18.4	156.0 [45.7] 147.2 [43.2] 18.1	150.8 [44.2] 129.6 [38.0] 17.8

GROSS SYSTEMS PERFORMANCE DATA-H210

				EN	ITERING INDO	OR AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	8400 [3964]	7025 [3315]	5600 [2643]	8400 [3964]	7025 [3315]	5600 [2643]	8400 [3964]	7025 [3315]	5600 [2643]
		DR ①	.06	.09	.13	.06	.09	.13	.06	.09	.13
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	258.4 [75.7] 193.9 [56.8] 13.0	249.5 [73.1] 168.8 [49.5] 12.8	240.3 [70.4] 144.5 [42.4] 12.5	244.1 [71.5] 224.6 [65.8] 12.8	235.7 [69.1] 197.4 [57.9] 12.6	227.0 [66.5] 170.8 [50.1] 12.4	231.9 [68.0] 231.9 [68.0] 12.7	223.9 [65.6] 217.1 [63.6] 12.4	215.7 [63.2] 189.1 [55.4] 12.2
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	252.7 [74.1] 182.3 [53.4] 13.6	244.0 [71.5] 158.3 [46.4] 13.4	235.0 [68.9] 135.2 [39.6] 13.1	238.4 [69.9] 212.9 [62.4] 13.4	230.2 [67.5] 186.9 [54.8] 13.2	221.7 [65.0] 161.5 [47.3] 13.0	226.2 [66.3] 226.2 [66.3] 13.3	218.4 [64.0] 206.6 [60.6] 13.0	210.4 [61.7] 179.8 [52.7] 12.8
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	246.7 [72.3] 171.9 [50.4] 14.2	238.2 [69.8] 149.0 [43.7] 14.0	229.4 [67.2] 126.9 [37.2] 13.7	232.4 [68.1] 202.7 [59.4] 14.1	224.4 [65.8] 177.7 [52.1] 13.8	216.1 [63.3] 153.4 [45.0] 13.6	220.2 [64.5] 220.2 [64.5] 13.9	212.6 [62.3] 197.4 [57.9] 13.7	204.8 [60.0] 171.7 [50.3] 13.4
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	240.4 [70.5] 162.9 [47.8] 14.9	232.1 [68.0] 141.0 [41.3] 14.7	223.5 [65.5] 119.9 [35.1] 14.4	226.1 [66.3] 193.6 [56.7] 14.8	218.3 [64.0] 169.6 [49.7] 14.5	210.3 [61.6] 146.3 [42.9] 14.3	213.9 [62.7] 213.9 [62.7] 14.6	206.5 [60.5] 189.3 [55.5] 14.4	198.9 [58.3] 164.5 [48.2] 14.1
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	233.8 [68.5] 155.3 [45.5] 15.7	225.7 [66.1] 134.2 [39.3] 15.4	217.4 [63.7] 114.0 [33.4] 15.1	219.5 [64.3] 186.0 [54.5] 15.5	212.0 [62.1] 162.9 [47.8] 15.2	204.1 [59.8] 140.3 [41.1] 15.0	207.3 [60.8] 207.0 [60.7] 15.3	200.2 [58.7] 182.6 [53.5] 15.1	192.8 [56.5] 158.6 [46.5] 14.8
H M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	226.9 [66.5] 149.0 [43.7] 16.5	219.1 [64.2] 128.7 [37.7] 16.2	211.0 [61.8] 109.2 [32.0] 15.9	212.6 [62.3] 179.6 [52.6] 16.3	205.3 [60.2] 157.3 [46.1] 16.0	197.7 [57.9] 135.5 [39.7] 15.7	200.4 [58.7] 200.4 [58.7] 16.1	193.5 [56.7] 177.0 [51.9] 15.9	186.4 [54.6] 153.8 [45.1] 15.6
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	219.7 [64.4] 143.9 [42.2] 17.3	212.1 [62.2] 124.3 [36.4] 17.0	204.3 [59.9] 105.5 [30.9] 16.7	205.4 [60.2] 174.6 [51.2] 17.1	198.3 [58.1] 152.9 [44.8] 16.8	191.0 [56.0] 131.8 [38.6] 16.5	193.2 [56.6] 193.2 [56.6] 17.0	186.5 [54.7] 172.7 [50.6] 16.7	179.7 [52.7] 150.2 [44.0] 16.4
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	212.2 [62.2] 140.3 [41.1] 18.2	204.9 [60.1] 121.3 [35.6] 17.9	197.3 [57.8] 102.9 [30.2] 17.5	197.9 [58.0] 171.0 [50.1] 18.0	191.1 [56.0] 149.9 [43.9] 17.7	184.0 [53.9] 129.3 [37.9] 17.4	185.7 [54.4] 185.7 [54.4] 17.9	179.3 [52.5] 169.6 [49.7] 17.6	172.7 [50.6] 147.6 [43.3] 17.2
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	204.4 [59.9] 138.1 [40.5] 19.1	197.3 [57.8] 119.4 [35.0] 18.8	190.1 [55.7] 101.6 [29.8] 18.5	190.1 [55.7] 168.7 [49.5] 19.0	183.5 [53.8] 148.0 [43.4] 18.6	176.8 [51.8] 127.9 [37.5] 18.3	177.9 [52.1] 177.9 [52.1] 18.8	171.8 [50.3] 167.8 [49.2] 18.5	165.4 [48.5] 146.1 [42.8] 18.1

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-H240

					ITERING INDOC	R AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]	9600 [4531]	7725 [3646]	6400 [3020]
<u> </u>		DR ①	.06	.11	.15	.06	.11	.15	.06	.11	.15
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power		271.5 [79.6] 156.3 [45.8] 15.1	263.0 [77.1] 136.0 [39.9] 14.9	269.6 [79.0] 220.5 [64.6] 15.3	258.2 [75.7] 186.7 [54.7] 15.0	250.2 [73.3] 164.4 [48.2] 14.7	258.7 [75.8] 245.6 [72.0] 15.1	247.8 [72.6] 209.7 [61.5] 14.8	240.0 [70.3] 185.7 [54.4] 14.6
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	280.8 [82.3] 186.4 [54.6] 16.2	269.0 [78.8] 155.6 [45.6] 15.9	260.6 [76.4] 135.4 [39.7] 15.6	267.0 [78.2] 219.6 [64.4] 16.0	255.7 [74.9] 186.0 [54.5] 15.7	247.7 [72.6] 163.8 [48.0] 15.5	256.1 [75.1] 244.7 [71.7] 15.9	245.3 [71.9] 209.0 [61.3] 15.5	237.6 [69.6] 185.2 [54.3] 15.3
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	277.4 [81.3] 184.9 [54.2] 17.0	265.7 [77.9] 154.4 [45.3] 16.7	257.4 [75.4] 134.4 [39.4] 16.4	263.5 [77.2] 218.1 [63.9] 16.9	252.4 [74.0] 184.8 [54.2] 16.5	244.5 [71.7] 162.7 [47.7] 16.3	252.6 [74.0] 243.1 [71.3] 16.7	242.0 [70.9] 207.8 [60.9] 16.3	234.4 [68.7] 184.2 [54.0] 16.1
R Y B U	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power		261.6 [76.7] 152.7 [44.8] 17.5	253.4 [74.3] 132.9 [39.0] 17.3	259.3 [76.0] 216.2 [63.4] 17.7	248.3 [72.8] 183.2 [53.7] 17.4	240.6 [70.5] 161.5 [47.3] 17.1	248.4 [72.8] 241.1 [70.7] 17.6	237.9 [69.7] 206.1 [60.4] 17.2	230.5 [67.6] 182.8 [53.6] 16.9
L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	268.1 [78.6] 180.2 [52.8] 18.8	256.7 [75.2] 150.5 [44.1] 18.4	248.7 [72.9] 131.1 [38.4] 18.2	254.2 [74.5] 213.5 [62.6] 18.7	243.5 [71.4] 181.1 [53.1] 18.3	235.9 [69.1] 159.6 [46.8] 18.0	243.3 [71.3] 238.6 [69.9] 18.5	233.0 [68.3] 204.0 [59.8] 18.1	225.8 [66.2] 181.0 [53.1] 17.8
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power		251.1 [73.6] 148.0 [43.4] 19.4	243.3 [71.3] 129.0 [37.8] 19.1	248.3 [72.8] 210.4 [61.7] 19.6	237.8 [69.7] 178.5 [52.3] 19.2	230.4 [67.5] 157.4 [46.1] 18.9	237.4 [69.6] 235.3 [69.0] 19.5	227.4 [66.6] 201.4 [59.0] 19.1	220.3 [64.6] 178.7 [52.4] 18.8
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	255.5 [74.9] 173.4 [50.8] 20.8	244.7 [71.7] 145.0 [42.5] 20.4	237.1 [69.5] 126.4 [37.1] 20.1	241.6 [70.8] 206.6 [60.6] 20.7	231.4 [67.8] 175.4 [51.4] 20.2	224.2 [65.7] 154.7 [45.3] 19.9	230.7 [67.6] 230.7 [67.6] 20.5	221.0 [64.8] 198.4 [58.2] 20.1	214.1 [62.7] 176.2 [51.6] 19.8
R E °F [°C]	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	248.0 [72.7] 169.2 [49.6] 21.9	237.5 [69.6] 141.5 [41.5] 21.5	230.1 [67.4] 123.4 [36.2] 21.1	234.1 [68.6] 202.4 [59.3] 21.7	224.2 [65.7] 171.9 [50.4] 21.3	217.2 [63.7] 151.7 [44.5] 21.0	223.2 [65.4] 223.2 [65.4] 21.6	213.8 [62.7] 194.9 [57.1] 21.1	207.1 [60.7] 173.1 [50.7] 20.8
	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power		229.5 [67.3] 137.5 [40.3] 22.6	222.3 [65.1] 119.9 [35.1] 22.2	225.8 [66.2] 197.7 [58.0] 22.9	216.2 [63.4] 168.0 [49.2] 22.4	209.5 [61.4] 148.4 [43.5] 22.1	214.9 [63.0] 214.9 [63.0] 22.7	205.8 [60.3] 191.0 [56.0] 22.2	199.4 [58.4] 169.8 [49.8] 21.9

DR —Depression ratio
dbE —Entering air dry bulb
wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

GROSS SYSTEMS PERFORMANCE DATA-H300

				EN	NTERING INDOC	OR AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	12000 [5663]	9475 [4472]	8000 [3776]	12000 [5663]	9475 [4472]	8000 [3776]	12000 [5663]	9475 [4472]	8000 [3776]
		DR ①	.02	.08	0.11	.02	.08	0.11	.02	.08	0.11
0	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power			348.9 [102.3] 182.0 [53.3] 20.0			331.8 [97.2] 218.4 [64.0] 19.7	347.0 [101.7] 326.2 [95.6] 20.2		321.6 [94.3] 245.5 [72.0] 19.5
UTDO	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power						325.7 [95.5] 215.9 [63.3] 20.7	340.4 [99.8] 322.6 [94.6] 21.2		315.5 [92.5] 243.0 [71.2] 20.4
O R D	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power						318.9 [93.5] 213.2 [62.5] 21.7	333.0 [97.6] 318.6 [93.4] 22.2		308.6 [90.4] 240.2 [70.4] 21.4
R Y B	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power			328.4 [96.2] 173.8 [50.9] 23.0			311.3 [91.2] 210.1 [61.6] 22.7	324.9 [95.2] 314.4 [92.2] 23.3	309.8 [90.8] 264.5 [77.5] 22.7	301.1 [88.2] 237.2 [69.5] 22.4
U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power			320.1 [93.8] 170.5 [50.0] 24.1			303.1 [88.8] 207.0 [60.7] 23.8	315.9 [92.6] 309.7 [90.8] 24.4		292.8 [85.8] 234.0 [68.6] 23.5
E M P E	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power			311.1 [91.2] 167.1 [49.0] 25.3			294.1 [86.2] 203.6 [59.7] 25.0	306.2 [89.7] 304.7 [89.3] 25.6		283.8 [83.2] 230.5 [67.6] 24.7
R A T U	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	[]		301.4 [88.3] 163.4 [47.9] 26.5			284.3 [83.3] 199.8 [58.6] 26.2	295.7 [86.7] 295.7 [86.7] 26.9	[]	274.1 [80.3] 226.8 [66.5] 25.9
R E °F	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power			290.9 [85.3] 159.5 [46.8] 27.8		281.9 [82.6] 219.3 [64.3] 27.9	273.9 [80.3] 195.9 [57.4] 27.5	284.4 [83.3] 284.4 [83.4] 28.3		263.6 [77.3] 222.9 [65.3] 27.2
[°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power						262.7 [77.0] 191.8 [56.2] 28.9	272.4 [79.8] 272.4 [79.8] 29.7		252.4 [74.0] 218.8 [64.1] 28.6

DR —Depression ratio
dbE —Entering air dry bulb
wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH
Sens —Sensible capacity x 1000 BTUH

Power —KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

[] Designates Metric Conversions

www.SureComfort.com ______ 2

AIRFLOW PERFORMANCE — 15 TON [52.8 kW]-SIDEFLOW

Air	M	del R	Model RKNL-H180 Voltage 208/230, 460, 575 — 3 Phase	4 180	9	tage	208/2	30, 4	60, 5,	75 —	3 Pha	se																											
A I																Exte	rnal S	Static	Pres	External Static Pressure—Inches of Water [kPa]	-Inch	es of \	Nater	[kPa]															
CEM II /c1 0.1 [.02] [0.1 [.	.02]	0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	02]	0.3[.	[/0	0.4 [.	10]	0.5 [.	12]	0.6		.] 2 0	[.17] (3.8[.	20] ([27] 0.9 [.22] [0.8 [.20]		1.0 [.25]	52]	1.1 [.27]		1.2 [.30]		1.3 [.32]		1.4 [.35]		1.5 [.37]	1.6	1.6 [.40]	1.7	1.7 [.42] 1.8 [.45]	1.8		1.9 [.47]	17] 2	2.0 [.50]	[]
[c/s]	RPM W RPM	Μ	RPIVI	8	3PM	×	RPM	×	3PM	×	3PM	W	_	W	RPM	W	RPM	W	RPM	W	RPM	W RPM		W RPM	Md	WRP	RPM W	/ RPM	M W	RPM	M	RPM	>	RPM	Μ	RPM	W	RPM \	>
4800 [2265]	-	-	_	-	Ι	-	Ι	-	Ι	-	283	583 1393 608		1508	632 1	1621 6	.1 959	1732 (679 1	1841	701 1	1947 7	723 20	2052 7	744 21	2154 764	34 2254	54 785	5 2326	908	2430	3 825	2537	844	2647	863 2	3 1927	881 28	2878
5000 [2359]	I	I	I	1	ı	-	ı	ı	ı	1	591	591 1476 616		1593	640 1	1707	663 1	1820	686 1	1930	708 2	2038 7	729 2-	2145 7	750 22	2248 771	71 2350	50 791	1 2420	0 811	2528	3 830	2640	820	2725	898	8 828	887 29	2995
5200 [2454]	1	Ι	-	Ι	Ι	Ι	Ι	1	575 1	1442	. 009	1442 600 1562 624		1681	648	9 2621	671 1	1911	693 2	2023	715 2	2133 7	736 22	2241 7	757 23	2346 777	77 2410	10 797	7 2520	0 817	2633	3 836	2749	855	5869	874 2	3 7667	892 31	3118
5400 [2548]	I	Ι	1	1	I	1	1	1	583	1530	. 809	1530 608 1652 632		1772 (655 1	1890	678 2	2002	701 2	2119 7	722 2231		743 23	2340 7	764 24	2447 784	34 2512	12 804	4 2626	6 823	2744	4 842	2865	861	2989	879 3	3117	897 32	3248
5600 [2643]	1	I	I	1	ı	ı	ı	1	592	1621	616 1745	1745	640	1866	663 1	1986	686 2	2103	708 2	2218	729 2	2331 7	750 2	2442 7	770 25	2551 791	31 2620		810 2739	6 830	1 2861	1 849	2987	298	3116	885	3248	803 33	3384
5800 [2737]	I	Ι	Ι	1	I	1	. 9/9	1588 601		1715	1715 625 1840		649	1964 (672 2	5085 6	694 2	2204	716 2	2321	737 2	2436 7	757 28	2548 7	778 26	2614 79	798 2735	35 817	7 2858	836	2982	5 855	3116	873	3249	891	3386	909 32	3527
6000 [2831]	1	I	I	1	ı	1	282	1683	610 1	1813	1813 634 1940	1940	657 2	2065	680 2	2187 7	702 23	2308	724 2	2426	744 2	2543 7	765 26	2657 73	785 27	2731 80	805 285	2856 824	4 2984	4 843	3116	3 861	3251	879	3389	897 3	3531	914 36	3676
6200 [2926]	I	Ι	Ι	1	570 1	1650	292	1650 595 1783 619	619	1913	1913 643 2042	2042	999	2169 (688 2	2293 7	710 2	2415	731 2	2535	752 2	2653 7	773 27	2728 7	792 28	2854 81	812 2984	84 831 3	1 3116	9 850	3253	3 868	3392	988	3535	903	3682	920 38	3832
6400 [3020]	I	I	1	1	579 1	1750	604	1750 604 1885 628 2017 652 2148 674	628	2017	652 2	2148		5276	697 2	2402 7	718 2	2526	739 2	2648	760 2	2767 7	780 28	2852 8	800 2983		819 3118	18 838	8 3255	928 9	3336	3 875	3541	892	8898	E 606	3839	926 38	3994
6600 [3114]	Ι	Ι	1	1	589 1	1854	614	1854 614 1991 637 2125 661 2257	637	2125	661	2257	83 2	2386	705 2	2514 7	727	2640	748 2	2763	768 2	2884 7	788 29	2984 8	808 31	3119 827	27 3258		845 3400	863	3546	3 881	3692	899	3847	916 4	4003	<u>'</u>	ı
6800 [3209]	I	I	574	1822	299	1961	623	574 1822 599 1961 623 2099 647 2235 670 2369 692	647	2235	670	5369		2500	714 2	2629 7	735 2	2756	756 2	2882	776 2	2984 7	.6 962	3121 8	815 32	3262 83	834 3405	05 853	3 3552	2 871	3702	888	3826	902	4013	922 4	4173	<u> </u>	ı
7000 [3303]	1	Ι	584	1930	7 609	2072	633	584 1930 609 2072 633 2211 656 2349 679 2484 701	7 99	2349	629	2484		2617	723 2	2748 7	744 2	2877	764 3	3003	785 3	3124 8	804 32	3265 8	823 34	3410 842		3259 860	0 3710	878 0	3865	2 895	4024	912	4185	929 4	4350	<u>'</u>	ı
7200 [3398] 570 [1897] 595 [2042] 619 [2185] 643 [2327] 666 [2466] 689 [2602] 711	220	1897	595 2	2042	619 2	2185	643	2327	7 999	2466	7 689	2602		2737	732 2	2870 753		3000 773		3127 7	793 3270	3 022	812 34	3416 831	31 35	3566 849	19 37	3719 868	8 3875	2 885	4035	5 902	4198	919	4364	Ι	1	1	1
A PI TO THE STATE OF THE STATE	13 1			:																																			l

NOTE: L-Drive left of bold line, M-Drive right of bold line.

Drive Package			L,	L, R					M, S			
Motor H.P. [W]			3.0 [2237.1	237.1]					5.0 [3728.5]	28.5]		
Blower Sheave			BK1	BK105H					BK105H	H2		
Motor Sheave			1VL	1VL-44					1VP-56	26		
Turns Open	-	2	3	4	2	9	-	2	3	4	2	9
RPM	233	701	699	049	605	572	276	803	873	840	808	2//

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE—15 TON [52.8 kW]

	4800	2000	5200	5400	2600	2800	0009	6200	6400		0089	7000	7200
CFM [%]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3398]
[۲/۶]					Res	Resistance — Inches of Water [kPa]	- Inches of	Water [k	[Pa]				
Wet Ceil	0.03	0.04	0.05	90.0	90.0	0.07	0.08	0.09	0.10	0.10	0.11	0.12	0.13
Wel Coll	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
	0.02	0.05	0.05	0.05	0.05	0.05	0.05	90.0	90.0	90.0	0.07	0.08	0.08
DOWIIIOW	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]
Downflow Economizer	0.09	0.10	0.10	0.11	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
R.A. Damper Open	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]	[0.03]	[0.03]	[0.04]	[0.04]	[0.04]	[0.04]	[0.04]
Horizontal Economizer	00.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0
R.A. Damper Open	[0.00]	[00:0]	[00.0]	[0.00]	[0.00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]
Concentric Grill RXRN-AD80 or	0.21	0.25	0.28	0.32	0.35	0.39	0.43	0.46	0.50	0.54	0.57	0.61	0.64
RXRN-AD81 & Transition RXMC-CJ07	[0.05]	[0.06]	[0.07]	[0.08]	[0.09]	[0.10]	[0.11]	[0.11]	[0.12]	[0.13]	[0.14]	[0.15]	[0.16]
Decoming Decomposition of	0.068	0.072	920.0	0.08	0.084	0.088	0.092	960.0	0.1	0.104	0.108	0.112	0.116
riessure Diop meny o	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.02]	[0.03]	[0.03]	[0.03]
Drocesson Drop MCDV 49	0.009	0.015	0.021	0.028	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083
riessure Diup MENV 13	[0.00]	[0.00]	[0.00]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.01]	[0.02]	[0.02]	[0.02]	[0.02]
		-	-	-									

NOTE: Add component resistance to duct resistance to determine total external static pressure.

AIRFLOW CORRECTION FACTORS-15 TON [52.8 kW]

						•							
ACTUAL—CFIM	4800	2000	5200	5400	2600	2800	0009	6200	6400	0099	0089	7000	7200
[F/8]	[2265]	[2360]	[2454]	[2549]	[2643]	[2737]	[2832]	[2926]	[3020]	[3115]	[3209]	[3304]	[3388]
TOTAL MBTUH	0.97	0.97	0.98	86.0	66'0	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04
SENSIBLE MBTUH	0.87	06.0	0.92	0.94	0.97	0.99	1.02	1.04	1.06	1.09	1.11	1.14	1.16
POWER KW	0.98	0.98	0.99	66.0	66.0	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible	factor times gro	ss performance	data-resulting	sensible capacity	y cannot exceed total capacity	total capacity.					[] Design	Designates Metric Conversions	Conversions

27 www.SureComfort.com

AIRFLOW PERFORMANCE - 17.5 TON [61.5 kW]-SIDEFLOW

		20]	>	ı	ı	ı	ı	1	1	Ι	1	Ι	1	1	ı	1	I	1
		2.0 [.50]	RPM	ı	ı	ı	ı	1	ı	Ι	I	Ι	I	ı	ı	ı	1	I
				I	I	I	Ι	I	Ι	Ι	Ι	Ι	I	I	I	Ι	Ι	I
		1.9 [.47]	W RPM W	I	I	I	ı	I	I	Ι	I	Ι	I	Ι	I	ı	I	Ι
		.45]	>	3803	3923	936 4053	4193	Ι	I	I	I	Ι	I	Ι	I	I	Ι	Ι
		1.8 [.45]	RPM	927	931		941	1	I	1	I	1	I	I	I	ı	I	1
		[75]	>	3628	3745	3873	921 4011	4160	4319	4489	I	Ι	I	Ι	I	I	I	1
		12'1	RPM	3285 885 3455 906	890 3570 911	896 3696 916		927	633	940	-	-		_	I	-	I	1
		[.40]	8	3455	3570	3698	902 3833	908 3380	4137	4304	4482	936 4670	I	Ι	Ι	Ι	1	1
		1.6	RPM	885	830	968			914	921	928		I	١	I	١	1	١
		[.37]	>	3285	3399	3523	881 3657	3802	3957	4123	4299	4485	4682	4889	1	1	1	I
		1.5	RPIV	863	698	875	881	888	895	905	910	917	956	934	1	1	1	1
		[.35]	>	3119	3230	3323	3485	3628	3781	3945	4119	4303	4498	4703	4918	936 5144	1	1
		1.4	RPIV	841	847	854	861	898	875	883	891	668	208	917	976	3 936	1	
		[.32]	>	2925	3065	3185	3316	3457	3098	3770	3942	4124	4317	4520	4734	4958	5192	5437
	Pa]	1.3	RPIV	819	3 825	832) 840	9 847	3 855	3 863	871	880	688 6	668	506	1 919	929	940
	External Static Pressure—Inches of Water [kPa]	$0.8[.20] \mid 0.9[.22] \mid 1.0[.25] \mid 1.1[.27] \mid 1.2[.30] \mid 1.3[.32] \mid 1.4[.35] \mid 1.5[.37] \mid 1.6[.40] \mid 1.7[.42] \mid$	>	2042 701 2186 725 2334 749 2484 <u> 773 2638</u> 796 2795 819 2955 841 3119 863	710 2286 734 2436 757 2588 780 2744 803 2903 825 3065 847 3230 869 3399	719 2397 742 2548 765 2703 788 2860 810 3021 832 3185 854 3353 875	751 2671 774 2827 796 2987 818 3150 840 3316 861 3485	761 2804 783 2962 805 3124 826 3289 847 3457 868 3628	3108 813 3272 834 3438 855 3608 875 3781	802 3264 822 3429 843 3598 863 3770 883 3945	3266 811 3430 832 3598 852 3768 871 3942 891 4119 910	780 3277 801 3440 822 3607 841 3776 861 3949 880 4124 899 4303 917	3460 812 3625 832 3794 851 3965 871 4139 889 4317 908 4498	803 3654 823 3821 843 3991 862 4164 881 4341 899 4520 917 4703	3857 835 4026 854 4199 872 4374 891 4552 909 4734	4072 847 4243 865 4417 883 4594 901 4774 919 4958	4296 859 4469 877 4645 895 4824 912 5007 929 5192	4531 871 4706 889 4884 906 5065 923 5249 940 5437
	of Wa	1.2	RPN	3 796	4 803	0 810	818	4 826	834	9 843	3 852	3 861	5 871	4 881	4 891	4 901	4 912	5 923
	ches	[.27]	≥	2638	274	2860	298	315	3272	3426	3228	3776	3966	416	437	429	485	506
	ᄪ	1.1	RPI	4 773	8 780	3 788	962 2	2 805	8 813	4 822	0 832	7 841	4 851	1 862	9 872	2 883	2 895	4 906
	essur	[.25]	≥	248	, 258	270	. 285	1 296	310	326	343	.098	379	339	419	441	464	488
	tic Pr	1.0	RPI	4 749	9 757	8 765	1 774	4 783	7 792	1 802	811	0 822	5 832	1 843	854	3 865	877	988
	al Sta	[.22]	×	5 233	1 243	2 254	1 267	1 280	770 2947	3101	326	344	362	3 382	5 402	424	9 446	470
	xtern] 0.9	RP	125	22.9	7 74) 22	.2 780	16/ 21	.08 2.	0 813	4 82	7 83	.5 84	926	1 87
	_	3 [.20	≥ E	1 218	0 228	9 236	728 2517	8 2649	8 2790	9 2942	9 3104	0 327	2 346	3 365	5 385	8 407	0 425	3 453
] 0.8	- R	12 70	10 71	14 21	37 72	96 738	36 748	98 759	692 91	1 78	38 792		32 815	97 858	27 840	9 853
		7 [.17			5 2140	5 2248	5 2367	5 2496	.6 2636	7 2786	8 2946	9 3117	1 3298	3 3490	9832	8 3904	1 4127	5 4359
•] 0.7	/ RP	29 00	89 96	03 695	20 705	47 715	85 726	33 737	91 748	90 759	39 77	29 78	29 79	39 808	50 821	91 83
Phase		6 [.15	×	11 11	196	671 2103	1 2220	692 2347	13 248	4 263	9 27	18 29	0 313	333	5 35	789 3739	802 3960	6 419
—3		2] 0.	V RP	599 1627 625 1762 651 1900 676	610 1719 635 1856 661 1996 685		1797 632 1935 657 2076 681		656 2192 679 2337 703 2485	620 2052 644 2193 668 2336 691 2483 714 2633	40 72	22 20	84 75	71 76	22 69	32 82	38 96	26 81
), 575		5[.12	<u>۸</u>	25 17	35 18	621 1822 646 1961	57 20	1919 644 2058 668 2201	79 23	91 24	33 26	16 28	28 29	42 31	55 33	39 32	33 37	97 40
0, 460		0] 0	N R	27 6	19 6	22 6	32 6	9 89	.9 76	9 98	191 7	.2 99	31 7	117 7.	13 7	119 7	36 7	12 29
08/23		.4[.1	Mc	96 16	10 17	21 18	32 16	44 20	56 21	58 23	81 24	93 26	07 28	20 3C	34 32	48 34	52 36	38 22
age 2		7] 0	×	- 2	9	9	9 262	919 6	351 6	193 6	345 6	9 809	382 7	2 998	2 090	264 7	179 7	704 7
Volt		.3[.0	PM	<u>.</u>	1	i	607 17	619 18	607 1912 632 2051	44 2-	57 23	71 25	84 26	98 28	13 30	.52 32	.42 34	57 37
210		5] 0	N N	İ	1	i	9 —	9	312 6)52 6	203 6	364 6	9 989	217 6	310 7	112 7	325 7	548 7
NL-H2		.2 [.0	PM	Ė		1	Ė	1	07 16	20 20	34 22	48 23	62 25	76 27	91 26	06 31	21 33	37 35
Model RKNL-H210 Voltage 208/230, 460, 575 — 3 Phase		12] 0	W	Ė	1	Ī	Ī	i	9 –	9	064 6	223 6	392 6	272 6	762 6	2 896	174 7	395 7
Mod		0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	RPM W RPM	İ	1	i	1	i		_	310 21	324 2.	339 2.	353 2	369 2.	384 29	200	716 3,
					_		_				303] 6	398] 6	192] E	386] 6	381] 6	775] 6	369] 7	364] 7
	¥	CEM [1/c]	± 5	5600 [2643]	5800 [2737]	6000 [2831]	6200 [2926]	6400 [3020]	6600 [3114]	6800 [3209]	[7000 [3303]] 610 [2064] 634 [2203] 657 [2345] 681 [2491] 703 [2640] 726 [2791]	[7200 [3398]] 624 [2223] 648 [2364] 671 [2508] 693 [2656] 716 [2807] 738 [2960]	7400 [3492] 639 2392 662 2536 684 2682 707 2831 728 2984 750 3139 771		7800 [3681] 669 [2762] 691 [2910] 713 [3060] 734 [3213] 755 [3369] 775 [3529] 796	8000 [3775] 684 [2963 706 3112 727 3264 748 3419 769 3578	8200 [3869] 700 3174 721 3325 742 3479 762 3636 783 3796	8400 [3964] 716 3395 737 3548 757 3704 777 3863 797 4026 816 4191 835

NOTE: L-Drive left of bold line, M-Drive right of bold line.

M, S	5.0 [3728.5]	BK105H	1VP-56	4 5 6	3 840 808 775					
	5.0			2 3	903 873					
				-	427					
				9	579					
	3.0 B B 3 3 669									
L, R	3.0 [2237.1] 8K105H 1VL-44 3 4 5 669 669 605									
L,	3.0 [2237.1] BK105H 1VL-44 3 4 5									
				2	701					
				-	733					
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM					

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

COMPONENT AIR RESISTANCE-17.5 TON [61.5 kW]

	2600	0089	0009	6200	6400	0099	0089	2000	7200	7400	2600	7800	8000	8200	8400
CFIM [2,6]	[2643]	[2737]	[2831]	[2926]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]
[[-/2]						Resis	tance —	Resistance — Inches of Water [kPa]	of Water	[kPa]					
WetCoil	90.0	20.0	80.0	60.0	0.10	0.10	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.17	0.18
Wel con	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]
, molitario C	0.05	0.05	0.05	90.0	90.0	90'0	0.07	0.08	0.08	0.09	0.10	0.11	0.12	0.13	0.14
DOWIIIOW	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]
Downflow Economizer	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24
R.A. Damper Open	[.03]	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]	[.04]	[:05]	[.05]	[:02]	[.05]	[.06]	[.06]
Horizontal Economizer	0.02	0.03	0.03	0.04	0.04	0.05	0.05	90.0	90.0	0.07	0.07	80.0	0.09	0.09	0.10
R.A. Damper Open	[.00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]
Concentric Grill RXRN-AD80 or	0.35	68.0	0.43	0.46	0.50	0.54	0.57	0.61	0.64	89.0	0.72	0.75	0.79	0.83	98.0
RXRN-AD81 & Transition RXMC-CJ07	[.09]	[.10]	[.11]	[.11]	[.11]	[.13]	[.14]	[.15]	[.16]	[.17]	[.18]	[.19]	[.20]	[.21]	[.21]
Concentric Grill RXRN-AD86 &	0.14	0.17	0.20	0.23	0.26	0.29	0.32	0.35	0.38	0.41	0.44	0.47	0.50	0.53	0.56
Transition RXMC-CK08	[.03]	[.04]	[.05]	[.06]	[.06]	[.07]	[.08]	[.09]	[.09]	[.10]	[.11]	[.12]	[.12]	[.13]	[.14]
Drocento Drop MEDV 9	0.084	0.088	0.092	960.0	0.1	0.104	0.108	0.112	0.116	0.12	0.124	0.128	0.132	0.136	0.14
riessure Diup Meny o	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]
Decoming Date MEDV 12	0.034	0.04	0.046	0.052	0.058	0.065	0.071	0.077	0.083	0.089	0.095	0.102	0.108	0.114	0.12
riessule Diop Meny 13	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[.03]

AIRFLOW CORRECTION FACTORS-17.5 TON [61.5 kW]

ACTUAL—CFM	2600	2800	0009	6200	6400	0099	0089	0002	7200	7400	2000	7800	8000	8200	8400
[L/s]	[2643]	[2737]	[2831]	[2926]	[3020]	[3114]	[3209]	[3303]	[3338]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]
TOTAL MBUH	96:0	0.97	26.0	0.98	0.98	66.0	0.99	1.00	1.00	1.01	1.01	1.02	1.03	1.03	1.04
SENSIBLE MBUH	0.86	0.88	06:0	0.92	0.94	96.0	0.98	1.00	1.02	1.04	1.06	1.08	1.10	1.12	1.14
POWER KW	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.02	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible capa	factor times gro	ss performan	ce data-result	ing sensible c	capacity canno	ot exceed total	Il capacity.						Designates	Metric (Sonversions

AIRFLOW PERFORMANCE - 20 TON [70.3 kW]-SIDEFLOW (C/H240)

		<u>[0</u>	8	4121	4271	4432	4603	4784	4976	179	392	5616	5850	6094	П	ı	П	П	1	Ι	
		0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.40] 1.7 [.42] 1.8 [.45] 1.9 [.47] 2.0 [.50] 1.0 [.4	PM	937 4	944 4	920 4	957 4	964 4	971 4	978 5179	986 5392	993 5	1001	1008 6	1	1	1	1		-	
		[Lt	W RPM		4056				4810						148	6408	1	ī	1	ı	
		7] 6.1		923 3902	930 4	933 4283	940 4448	947 4624	954 4	962 5007	969 5214	977 5432	985 5660	993 5899	5954 1001 6148	1009 6	1			1	
		5]	WR		3912	4072	4240	4417	4650			5255	l		954 1	208 1	472	747		-	
		.8 [.4	PM	906 3761	912 3	919 4	926 4	932 4	938 4	945 4841	953 5043	961 5	969 5477	977 5710	985 5	993 6208	1002 6472	1010 6747	<u> </u>	_	
		12]	WR				_				l	_					272 1		821	-	
		.7 [.4	PM	888 3621	894 3769	901 3926	909 4091	916 4264	923 4447	930 4637	936 4878	944 5084	952 5300	961 5528	969 5765	978 6013	986 6272	995 6541	1004 682	1	
		<u>-</u>	MAN W RPM W RPM W RPM		3626		3942	4112	4292			4880	1	5352	5584		6209	6342	6616 1	6901	
		7.] 9.	PM	69	876 3	3490 865 3634 884 3780	891 3	898 4	906 4	4165 897 4322 914 4479	4356 905 4515 922 4675	930 4	4761 922 4927 936 5130	44 5		5645 962 5826	9 1/1		9 686		
		1 [/	W	342 8	3484 8	634 8	794	3961	4137	322 6	515	4717 9	927	931 5146 944	5408 953	645	5712 955 5892 971	5963 964 6149 980	6418 9	3 969	
		.5[.3	PM	20 3	857 3	92	3646 873 3794	881 3	889 4	97 4	05 4	914 4	22 4	31 5	937 5	46 5	55 5	9 49	973 6	9 88	
		5] 1	WR	203	3342 8	490	946	3811 8	3984 8	165	3 998	4554 6	761	4977 6	5201 8	933 5434 946	712 8	3 896	6225	498 6	
		.4 [.3	PM	30 3	838 3	846 3	854 3	863 3	871 3	79 4	88 4	897 4	900	115 4	24 5	33 5	39 2	49 5	928 6	9 89	
		2] 1	WR	2789 810 3065 830 3203 850 3342 869 3481	-	346 8	3 661	3661 8		3854 862 4009 879	870 4197 888	4392 8	4432 889 4596 906	898 4809 915	5030 924	3 097	927 5498 939	5565 933 5784 949		3 208	
		.3[.3	PM	30	819 3201	3202 827 3346	835 3499	844 36	853 3831	92 40	120 4	880 4	89 4	98 48	907 50	917 5260	27 5	33 2.	942 6040	152 63	
	<u>E</u>	1	WR	8 682	8 0908	202 8	3352 8	3511 8	8 8298	354 8	4038 8	4231 8	432 8	4642 8	4860 9	2087	5322 9	992	5818 9	122 9	
	Vater	.2 [.3	PM	785 2	798 30	807 32	816 33	825 33	834 36	43 38	852 40	862 4	871 4	881 46	891 48	901 50	911 5	921 5	931 58	.9 28	
	s of V	7] 1	W		308	922 8	_	3362 8		999 8		4070 8	268 8	4475 8		4914 9	146 9			394 9	
	를	.1[.2	PM	763 2670	773 2808	783 2955	796 3207	805 33	815 3526	824 3699 843	834 3880	844 4(854 4268	864 4	874 4690	884 46	894 5146	905 5387	915 5636	26 58	
	E I	5] 1	W RPM W RPM W RPM W RPM W RPM	2553 7	2685 7	2826 7	2977 7	3139 8	3375 8	3545 8	3723 8	3910 8	4105 8	4309 8	4521 8	4742 8	4971 8	5209 9	5455 9	209 9	
	Press	.0 [.2	PIM	ı		61 28	72 29	783 3	795 33	802 33	815 37	825 38	35 4	846 43	856 4	867 47	877 49	888	899 5	10 2.	
	External Static Pressure—Inches of Water [kPa]	2] 1	W RPM W RPM	698 2328 719 2439 741	2564 751	718 2574 739 2699 761	750 2844 772	2999 7	3165 7			3750 8	797 3780 816 3942 835	4143 8	4352 8	4570 8	4796 8		5274 8	5161 877 5343 894 5526 910 5709 926 5894 937 6122 952 6307 968 6498 983 6696 998	
	nalS	.9 [.2	PIM	19 2	.59 56	39 50	.20 28	761 29	772 3.	783 3341	795 3567	806 3.	16 39	827 4	838 4	849 4	860 47	4854 871 5031	882 53	94 58	
	쯢	0	WR	328 7	446 7	574 7		2862 7	321 7	3190 7		3229 8	8 082	3978 8	4184 8	4399 8	4622 8	354 8	5094 8	343 8	
		.8 [.2	RPM	98 23	707 2446 729	18 25	728 2713	739 28	750 3021	761 3-	773 3370	785 35	26 32	808	819 4	831 43	842 46	853 48	865 50	77 53	
		7] 0	W	2218 6	2330 7	2452 7	2585 7	2727 7	2880 7	3043 7	3216 7	2 6688	3592 7	3796 8	4017 8	4229 8	8 6444	8 8/9	4915 8	161 8	
		.7 [.1	-	676 2	686 23				728 28			763 33									
وو		2 <u>]</u> 0	WR		217 6	332 6	158 7	594 7		397 7	364 7		127 7	325 7	332 8	9 650	576 8	502 8	236 8	979 8	
Z		. 6 [.1	PM	54 2	94 2	74 2	84 2	95 2	.00	18 2	.59 3	741	54 3	.67	380	93 4	05 4	17 4	59 4	42 4	
Ĩ		2] 0	WR	632 2007 654 2111	2106 664 2217	630 2100 652 2215 674 2332 696	641 2213 663 2334 684 2458 706	651 2336 673 2464 695 2594 717	641 2338 663 2470 684 2604 706 2741	630 2339 652 2475 674 2613 696 2754 718 2897 740	642 2480 664 2622 686 2767 707 2914 729 3064 751	676 2780 698 2931 719 3085 741 3241	265 7	456 7	657 7	898	3 680	327 8	228	3 86 /	
U, 5/		.5[.1	PIM	32 2	642 2	52 23	93 23	73 2	84 2	.2 96	.07	19 3	32 33	45 3	.28	71 3	85 4	98 4:	11 4	23 4.	
.0, 40		0]	WR	1	9	100	213 6	336	470 6	613 6	192	931 7	105 7	290 7	484 7	689	904 7	129 7	381 8	617 8	
7/8n		1.4[.1	PM	1	1	330 2	341 2	51 2	363 2	374 2	386 2	398 2	710 3	723 3	36 3	749 3	63 3	77 4	92 4	305 4	1 1 1 1
age z] [2	WR	1	<u> </u>	<u> </u>	-	2211	338	475 6	622	9 08/	948	126 7	314 7	512 7	721 7	686	168 7	407	
5		.3 [.0	PM	1	İ	i	1	630 2	341 2	52 2	364 2	376 2	388 2	701 3	74 3	27 3	741 3	22 3	69 4	84 4	-
240		12]	WR	1	<u> </u>		Ī	1	<u> </u>	339 (480		793	964 7	146 7	338 7	540 7	752 7	975 7	207 7	
Ä		.2 [.0	PM	1	İ	İ	Ī	i	ŀ	30 2	42 2	654 2631	.66 2	79 2	92 3	.02	19	33 3	.47 3	.62 4	-
e X		2] 0	WR	1	İ	Ī	· 	i	1	9	9	185 6	340 6	305 6	9 086	1 99 1	361 7	2 199	783 7	010 7	1 1 1 1
Model KKNL-HZ4U Voltage 208/230, 460, 5/5 — 3 Phase		1.0	PM	<u> </u>	<u>.</u> 	1	1	1		İ	1	632 2485	44 21	157 2l	70 2	83	97 3	711	.25 3.	39 4(3
		0	<u>≅</u>					_		_	_	9 [9/	70] 6	64] 6	59] 6	53] 6	48] 6	42] 7	36] 7	31] 7	THOM STATE OF THE
Λį		FIUW CEM II /8] 0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15] 0.7	=	6400 [3020]	6600 [3115]	6800 [3209]	7000 [3304]	7200 [3398]	7400 [3492]	7600 [3587]	7800 [3681]	8000 [3776]	8200 [3870] 644 [2640 666 2793 688 2948 710 3105 732 3265 754 3427 776	8400 [3964] 657 [2805 679 [2964 701 3126 723 3290 745 3456 767 3625 789	8600 [4059] 670 [2980 692 3146 714 3314 736 3484 758 3657 780 3832 800	8800 [4153] 683 [3166] 705 [3338] 727 [3512] 749 [3689] 771 [3868] 793 [4059] 812	9000 [4248] 697 3361 719 3540 741 3721 763 3904 785 4089 805 4276 824	9200 [4342] 711 [3567] 733 [3752] 755 [3939] 777 [4129] 798 [4327] 817 [4502] 835	9400 [4436] 725 3783 747 3975 769 4168 792 4381 811 4558 829 4736 847	9600 [4531] 739 4010 762 4207 784 4407 805 4617 823 4798 842 4979 859	- -
		2	<u> </u>	49	99	89	2	72	74	9/	78	8	8	8	8	88	8	92	98	96	1

NOTE: L-Drive left of bold line, M-Drive right of bold line.

						3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure. 4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.
				9	870	 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Press Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.
⊢				2	899	inimum F nt resista
ed only),	32.7]	H	71	4	928	t AHRI m compone
l(field installed only), T	7.5 [5592.7]	BK120H	1VP-71	3	955	airflow a oil. Add c e.
N(fie				2	981	ve rated vith dry c pressur
				-	1009	Re-adjustment of sheave required to achieve rated air Drive data shown is for horizontal airflow with dry coil resistance to determine total External Static Pressure.
				9	793	required prizontal tal Exter
				2	820	sheave i is for ho rmine to
	12.7]	돈	7	4	847	ment of a shown e to dete
M, S	7.5 [5592.7]	BK130H	1VP-71	3	874	Re-adjust Orive data esistanco
				2	905	3.F 4. [
				-	631 928 902 874 847 820 793 1009 981 955	Ü.
				9	631	re shown in bold type. below minimum turns open shown.
				2	658	l type. turns op
В	728.5]	30H	1VP-56	4	709 683	n in bolc inimum
L, R	5.0 [3728.5]	BK130H	1VP	3	709	ire shown in bold type. below minimum turns c
				2	734	ettings a sheave I
				1	756	heave se t motor
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM	NOTES: 1. Factory sheave settings a 2. Do not set motor sheave b

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.

COMPONENT AIRFLOW RESISTANCE-20 TON [70.3 kW] (C/H240)

CFM [13020] 6400 6600 6800 7000 7200 7200 740 LL/s] Let Met Coil 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.	200 7400 3981 [3492]	2000	7800	8000	8200	8400	8600	8800	0006	0006	9400	0000
[3020] [3114] [3209] [3303] [3398]			-			5				-	,	2000
26r 0.05 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.001 0	_	[3586]	[3681] [[3775] [3	[3869] [[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	4530]
28r 0.06 0.06 0.00 0.01 0.01 0.01 0.01 0.00 0.00		Resista	Resistance — I	Inches of Water [kPa]	Water	[kPa]						
[.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.00] [.01] [.01] [.02] [.02] [.02] [.02] [.02] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.01	0.01 0.02	0.02			0.04	0.04	0.05	0.05	90.0	90.0	0.07	0.07
zer 0.06 0.06 0.07 0.08 0.08 zer 0.15 [.01] [.02] [.02] [.02] zer 0.15 0.16 0.16 0.17 0.18 izer 0.04 [.04] [.04] [.04] [.04] [.04] izer 0.04 0.05 0.05 0.06 0.06 intermediate 0.26 0.29 0.32 0.35 0.38 RN-AD86 0.26 0.29 0.32 0.35 0.35 0.38	.00] [.00]	[.00]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]	[.02]
zer [.01] [.01] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.02] [.03] [.03] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.01] [0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.22
zer 0.15 0.16 0.16 0.17 0.18 [.04] [.04] [.04] [.04] [.04] [.04] izer 0.04 0.05 0.05 0.06 0.06 [.01] [.01] [.01] [.01] [.01] RN-AD86 0.26 0.29 0.32 0.35 0.38	.02] [.02]	[.02]	[.03]	[.03]	[:03]	[:03]	[.04]	[.04]	[.04]	[:05]	[:02]	[.05]
[.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.04] [.01]		0.20	0.21		0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30
izer 0.04 0.05 0.05 0.06 <th< th=""><td>.04] [.05]</td><td>[.05]</td><td>[.05]</td><td>[.05]</td><td>[.06]</td><td>[90.]</td><td>[.06]</td><td>[.06]</td><td>[.07]</td><td>[.07]</td><td>[.07]</td><td>[.07]</td></th<>	.04] [.05]	[.05]	[.05]	[.05]	[.06]	[90.]	[.06]	[.06]	[.07]	[.07]	[.07]	[.07]
[.01] [.01] [.01] [.01] [.01] [.01] [.01] [.01]	70.0 90.0	0.07	80.0	60.0	60.0	0.10	0.10	0.11	0.11	0.12	0.12	0.13
0.26 0.29 0.32 0.35 0.38	.01] [.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[:03]	[:03]
0000	0.38 0.41	0.44	0.47	0.5	0.53	92.0	0.59	0.62	0.65	69.0	0.72	0.75
& Transition RXMC-CK08 [.06] [.07] [.08] [.09] [.09] [.11	.09] [.10]	[.11]	[.12]	[.12]	[:13]	[14]	[.15]	[.15]	[.16]	[.17]	[.18]	[.19]
o 0.1 0.104 0.108 0.112 0.116	.116 0.12	0.124	0.128	0.132 0	0.136	0.14	0.144	0.148	0.152	0.156	0.16	0.164
riessule Diup Meny o	.03] [.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]
0.065 0.071 0.077 0.083	.083 0.089	0.095	0.102	0.108	_	0.12	0.126	0.132	0.138			0.157
[.02] [.02] [.02] [.02]		[.02]			[:03]	[:03]	[:03]	[.03]	[.03]	[.04]	[.04]	[.04]

AIRFLOW CORRECTION FACTORS-20 TON [70.3 kW] (C/H240)

										•							
ACTUAL—CFM	6400	0099	0089	7000	7200	7400	2600	7800	8000	8200	8400	8600	8800	0006	9200	9400	0096
[F/8]	[3020]	[3114]	[3209]	[3303]	[3398]	[3492]	[3586]	[3681]	[3775]	[3869]	[3964]	[4058]	[4153]	[4247]	[4341]	[4436]	[4530]
TOTAL MBH	0.97	0.97	0.98	96.0	0.99	66.0	1.00	1.00	1.01	1.01	1.02	1.02	1.03	1.03	1.03	1.04	1.04
SENSIBLE MBH	0.88	06:0	0.92	0.94	96.0	0.97	0.99	1.01	1.03	1.05	1.07	1.09	1.10	1.12	1.14	1.16	1.18
POWER KW	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.02	1.02	1.02
NOTES: Multiply correction factor times gross performance data-resulting sensible	ion factor tim	es gross per	formance da	a-resulting	ප	pacity cannot	t exceed total	capacity.						[] Des	Designates M	Aetric Conversions	versions

31

www.SureComfort.com

AIRFLOW PERFORMANCE - 25 TON [87.9 kW]-SIDEFLOW

		0	>	877	260	331	579	841	118	408	ı	ı	П	ı	ı	ı	Ι	ī	ı	ı	ı	Ι	ı	Ι	
		2.0 [.50]	PM	994 5720 1009 5877	988 5774 1003 5935 1018 6097	997 5997 1012 6164 1028 6331	1007 6235 1022 6407 1037 6579	972 5960 987 6134 1002 6310 1017 6486 1032 6663 1047 6841	982 6209 997 6389 1012 6570 1027 6752 1042 6934 1057 7118	992 6473 1007 6658 1022 6844 1037 7031 1052 7219 1068 7408	İ	i	i	İ	1	İ	ı	Ī	i	<u> </u>	Ì	<u> </u>	1	1	
			W	720 1	935 1	164 1	407 1	663 1	934 1	219 1	7518	П	_	П	1		-	<u> </u>	1	1		_	_	1	
		1.9 [.47]	PM	394 5	303 5	312 6	322 6	33 2 61	342 6	352 73	203 7	i	i	İ	1	<u> </u>	1	Ī	i	<u> </u>	Ì	<u> </u>	_	1	
			NR	992	74 10	97 10	35 10	11	752 10	31 10	325 10	Ĺ	Ĺ	· 	_	· 	1	-	Ī	_	· 	· 	1	1	
		1.8 [.45]	M	979 5565	88 57	97 56	29 200	11 62	127 67	37 70	148 73	128 76	1069 7954	İ	1	_	İ	<u>'</u>	1	<u>.</u>	<u> </u>	_	_	<u> </u>	
			V R	_			64 10	10 10	70 10	44 10	32 10	34 10			· 	_	<u>.</u>	' 	1	_	1	1	_	<u>'</u> 	
		1.7 [.42]	M	963 5410	973 5614	82 58	92 60	02 63	12 65	22 68	32 71	43 74	54 77	e5 80	_	<u>'</u>	1	1		_	<u> </u>	_		<u>'</u>	
		1.	VRF	99	55 9	967 5667 982 5832	977 5894 992 6064	34 10	89 10	58 10	987 6561 1002 6750 1017 6941 1032 7132 1048 7325 1063	983 6653 998 6847 1013 7042 1028 7238 1043 7434 1058 7632	994 6947 1009 7147 1024 7347 1039 7548 1054 7751	73 10	12 -		1	<u>'</u>	<u>'</u>	<u> </u>	<u>'</u>	_	_	1	
		1.6 [.40]	M	948 5256	943 5296 958 5455	67 56	77 58	87 61	97 63	99 /0	17 69	28 72	39 75	20 78	61 82	72 85		<u> </u>	1	<u>'</u> 	<u> </u>	 	_	<u> </u>	
			V RF	54 9	6 96	03 9	l	6 09	6 60	73 10	50 10	42 10	47 10	67 10	00 10	48 10		Ė		Ė	Ĺ	1	_	_	
		1.5[.37]	N	903 4680 920 4854	43 5 5	952 5503	962 5725	2 2	32 62	92 64	J2 67	13 70	24 73	34 76	46 80	57 83	28 82		-	_		_	1	 -	
		-	/ RP	30 92		ı				36	31 100	17 10	17 10	31 100	39 10	31 109	38 100	- 89				 -	-		
		1.4 [.35]	×	3 468	914 4912	924 5157	947 5557	957 5787	967 6031	977 6289	12 656	789 80	12 217	9 746	1 778	12 813	3 848	1065 8858	1	<u> </u>	-	-	-	1	
			RP			ı						33	100	101	9 103	9 10	106	106	-	 -		-	_	 -	
		3[.32	M	886 4510	897 4735	908 4972	919 5223	942 5614	952 5853	962 6105	972 6372	3 665	4 694	5 725	6 757	7 791	8 826	E98 0	1 901	 -		 -	<u> </u>	 	
	[Pa]	1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32]	W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM	4 88		_						86 0	66	975 6849 990 7052 1005 7256 1019 7461 1034 7667 1050 7873 1065 8081	986 7162 1001 7370 1016 7579 1031 7789 1046 8000 1061 8212	982 7275 997 7488 1012 7701 1027 7916 1042 8131 1057 8348 1072 8565	993 7610 1008 7828 1023 8047 1038 8267 1053 8488 1068 8710	1005 7959 1020 8182 1035 8407 1050 8632	8094 1017 8321 1032 8550 1046 8780 1061 9011	- 8	0.		!	 	
	ter (k	[.30	M	869 4344	863 4392 880 4561	891 4791	902 5034	913 5290	924 5558	947 5923	958 6184	968 6460	979 6749	0 705	1 737	2 770	3 804	5 840	828 9	1029 8698 1043 8933 1058 9168	1041 9089 1055 9329 1070 9570		_	 	
	of Wa	1.2	RPI	2 86	2 88	4 89	l							66 6	2 100	8 101	8 102	2 103	0 104	3 105	9 107	9	1	1	
	sees ([.27]	M	851 4182	3 439	874 4614	886 4850	862 268	908 5329	919 5633	943 5997	953 6267	964 6551	5 684	9 116	7 748	8 782	0 818	2 855	3 893	5 932	1068 9739		-	
) u	1.1	RPI		98		l			ш						2 66	100	3 102	103	3 104;	105	106	-	1	
	ssure	[.25]	W	833 4024	845 4226	856 4442	868 4670	880 4910	892 5164	903 5430	915 5710	926 6002	949 6355	960 6647	971 6954	727	3 761(2 795	288 2	8698 E	1 908	1053 9494	1065 9913	1	
	ic Pre	1.0	RPI	_						_	_	Ш						100	101	1029	104	1053		1	
	External Static Pressure—Inches of Water [kPa]	0.9[.22]		3870	4065	4273	4493	4727	4973	5232	5504	2288	9082	9449	6748	2002	7393	222	8094	8465	8376 1011 8613 1026 8851	9250	9168 1035 9416 1050 9664	9585 1048 9838 1063 10092	
	terna	0.9	W RPM	814	826	838	850	862	874	988	868	910	922	945	926	296	6/6	066	1002	1014	1026	1038	1050	1063	
	Ex	.20]	M	794 3720	802 3908	820 4108	832 4321	845 4547	857 4786	869 5037	5302	893 5579	2869	6171	6542	953 6852	964 7176	975 7514	987 7867 1002	999 8233 1014	8613	8765 1023 9007	9416	9838	
		0.8[.20]	RPM	794	807	820	832	845	857	869	881		902	917	941		964	975		666	1011	1023	1035	1048	
		[.17]	M	I	-	3947	4153	4371	4603	4847	5104	5373	9999	5951	6229	6580	6961	7294	7640	8001	8376	8765	9168	9585	
		0.7 [RPM	1	-	801	813	826	839	851	864	876	889	901	913	926		961	972	984	996	1008		1033	
Jase			W	I	1	1	794 3989	807 4200	820 4424	833 4660	846 4910	859 5172	872 5447	884 5735	897 6035	909 6349	922 6675 949	946 7074	958 7415	969 7771	8140	994 8524 1008	8921	9333	
- 3 PI		19.0	RPM	1	-	1	794	807									922			969	981		1006	1019	
- S/C		.12]	M	Ι	I	I	I	I	801 4249	815 4478	828 4720	4975	854 5242	867 5523	880 5816	893 6122	6441	6772	7191	955 7541	7905	8283	8676	9082	
460,		0.5[RPM	I	I	I	I	I	801	815		841 4975		867	880	893	906	918	943		967 7905 981 8140 996	979	991	1004	
230,		1 0	M	I	Ι	I	I	1	Ι	4300	4534	4781	5042	5315	2600	2899	6210	6534	6871	7313	7671	8044	8431	8832	au
Model RKNL-H300 Voltage 208/230, 460, 575 — 3 Phase		0.4[RPM	I	I	I	I	I	I	795 4300	809 4534	804 4592 823 4781	836 5042	849	863	928	889	905	915	940	952	964	977	686	il bloc
ıltage		[70	M	ı	I	ı	I	I	I	ı	4352	4592	4845	5110	5389	2680	5984	6301	9630	6972	7328	2806	8187	8583	ht of
5		0.3 [.	3PM	ı	I	ı	I	I	ı	I	790	804	798 4652 817 4845	831	845	828	872	885	668	912	925	. 026	962	975	n riu
1300		[20	W	ı	Ι	ı	ı	-	-	1	1	1	1652	1910	181	3465	19/9	3071	3393	3728	7075	7436	7944	3334	1-Dri
ŀ			PM	ı	ı	ı	ı	ı	1	ı	1	ı	7 862	813 4	827	840	854	988	882 (895 (906	922	948 7	3 096	ina
jel Ri		02]	W	ı		ı	ı	-	-	1	1	ı	Ī	1714	826	254	243	845	160	487	827	.180	546	280	hold
Ĭ		0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10] 0.5 [.12] 0.6 [.15]	RPM W RPM W RPM W RPM W RPM W RPM W RPM W RPM	ı	ı	ı	ı	1	1	ı	ı	ı	Т	793 4714 813 4910 831 5110 849 5315	808 4	822 5	836 5	850 5845 868 6071 885 6301 902 6534 918 6772	864 E	878 6487 895 6728 912 6972 940 7313	892 6	2 906	920 7	946	off of
		_		75]	369]	964]	158]	[23]	[47]	H	136]	30]	╘		313]	908]	02]	96]	91]	385]	379]	174]	568]	963]	rive I
:]	8000 [3775]	8200 [3869]	8400 [3964	8600 [4058]	8800 [4153]	9000 [4247]	9200 [4341	9400 [4436]	9600 [4530]	9800 [4624]	10000 [4719]	10200 [4813] 808 4978 827 5181 845 5389 863 5600	10400 [4908] 822 5254 840 5465 858 5680 876 5899	10600 [5002] 836 5543 854 5761 872 5984 889 6210 906 6441	10800 [5096]	11000 [5191] 864 6160 882 6393 899 6630 915 6871 943 7191	11200 [5285]	11400 [5379] 892 6827 909 7075 <u> 925 7328</u> 952 7671	11600 [5474] 906 7180 922 7436 950 7806 964 8044 979 8283	11800 [5568] <u> 920 7546 948 7944 </u> 962 8187 977 8431 991 8676 1006 8921 1021	12000 [5663] 946 8087 960 8334 975 8583 989 8832 1004 9082 1019 9333 1033	NOTE: 1 - Drive left of hold line M-Drive right of hold line
			5	8	82	84	98	88	96	92	94	96	96	100	102	104	106	108	110	112	114	116	118	120	ION

Drive Package			Ļ	L, R					M, S	(A)		
Motor H.P. [W]			7.5 [5592.7]	592.7]					10 [7457.0]	57.0]		
Blower Sheave			BK1	BK130H					BK120H	H0		
Motor Sheave			1VP-71	-71					1VP-75	75		
Turns Open	1	2	3	4	2	9	1	2	3	4	2	9
RPM	919	894	919 894 869	844	844 817	790	1067 1039 1012	1039	1012	982	953	925

NOTES: 1. Factory sheave settings are shown in bold type.
2. Do not set motor sheave below minimum turns open shown.
3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure.
4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

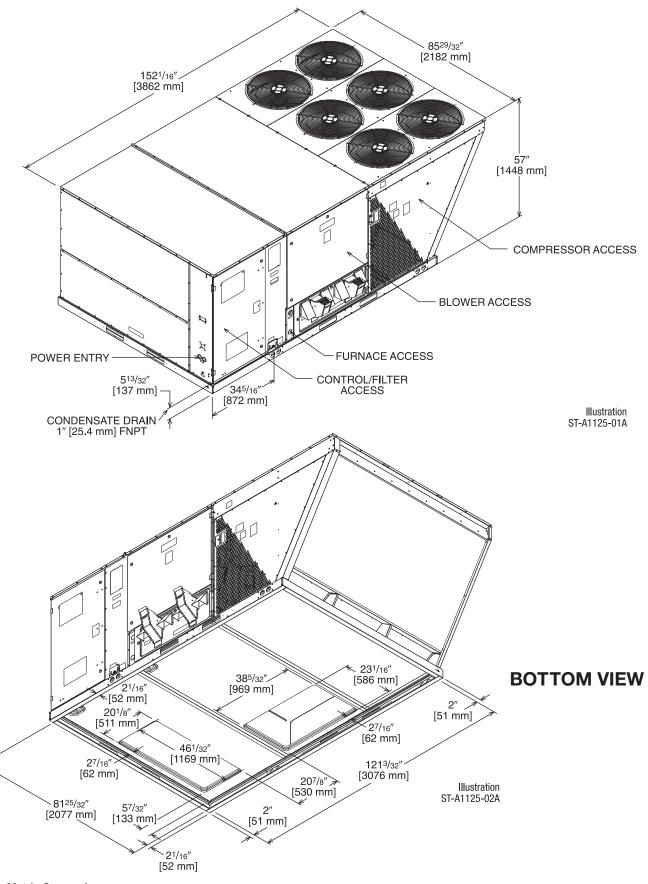
COMPONENT AIR RESISTANCE—25 TON [87.9 kW]

CFM	8000 [3775]	8400 [3964]	8800 [4153]	9200 [4341]	9200 9600 10000 10400 10800 11200 11600 14341] [4530] [4719] [4908] [5096] [5285] [5474]	10000 [4719]	10400 [4908]	10800 [5096]	11200 [5285]	10000 10400 10800 11200 11600 12000 14719] [4908] [5096] [5285] [5474] [5663]	12000 [5663]
[۲/9]				Resist	Resistance — Inches of Water [kPa]	lnches (of Water	[kPa]			
West Coil	0.07	0.09	0.10	0.12	0.13	0.15	0.16	0.18	0.19	0.21	0.22
Wel coll	[.02]	[.02]	[.02]	[.03]	[.03]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]
Dountle	0.12	0.14	0.16	0.19	0.22	0.25	0.29	0.33	0.37	0.42	0.46
MO 1	[.03]	[:03]	[.04]	[.05]	[:05]	[90.]	[.07]	[80.]	[60:]	[.10]	Ξ
Downflow Economizer	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.37	0.39	0.41	0.44
R.A. Damper Open	[.05]	[90.]	[90]	[.07]	[.07]	[.08]	[.08]	[.09]	[.10]	[10]	Ξ
Horizontal Economizer	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
R.A. Damper Open	[.02]	[.02]	[.03]	[:03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.05]
Concentric Grill RXRN-AD88	0.17	0.23	0.30	0.36	0.43	0.50	0.56	0.63	69.0	92.0	0.82
& Transition RXMC-CL09	[.04]	[90.]	[.07]	[.09]	[.11]	[.12]	[.14]	[.16]	[.17]	[.19]	[.20]
O MCDV O	0.132	0.14	0.148	0.156	0.164	0.172	0.18	0.188	0.196	0.204	0.212
riessule Diop Meny o	[.03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.05]
Decoming Days MCDV 12	0.108	0.12	0.132	0.145	0.157	0.169	0.182	0.194	0.206	0.219	0.231
riessule Diup MENV 13	[.03]	[:03]	[.03]	[.04]	[.04]	[.04]	[.04]	[.05]	[.05]	[.05]	[.06]

AIRFLOW CORRECTION FACTORS-25 TON [87.9 kW]

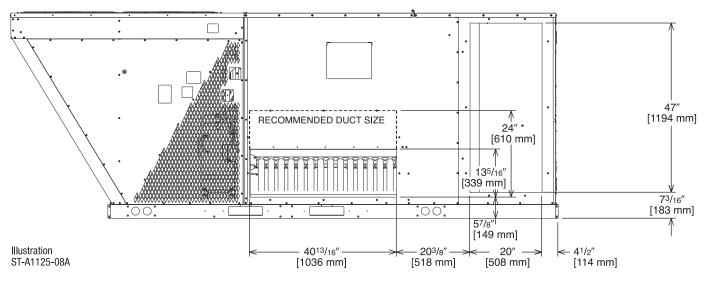
ACTUAL—CFIM	8000	8400	8800	9200	0096	10000	10400	10800	11200	11600	12000
[r/s]	[3775]	[3964]	[4153]	[4341]	[4530]	[4719]	[4908]	[5096]	[5285]	[5474]	[2963]
TOTAL MBTUH	0.97	86:0	0.99	0.99	1.00	1.01	1.02	1.03	1.03	1.04	1.05
SENSIBLE MBTUH	0.89	0.92	0.95	0.98	1.01	1.04	1.08	1.11	1.14	1.17	1.20
POWER KW	0.99	66'0	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.02

NOTES: Multiply correction factor times gross performance data-resulting sensible capacity cannot exceed total capacity.


		ELECTRICAL	DATA – RKNL- SERIE	S	
		H180CR	H180CS	H180DR	H180DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
ion	Volts	208/230	208/230	460	460
mat	Minimum Circuit Ampacity	78/78	81/81	38	40
Unit Information	Minimum Overcurrent Protection Device Size	90/90	90/90	45	45
ีนก	Maximum Overcurrent Protection Device Size	100/100	100/100	45	50
	No.	2	2	2	2
	Volts	200/230	200/230	460	460
'n	Phase	3	3	3	3
Mot	RPM	3450	3450	3450	3450
orl	HP, Compressor 1	7	7	7	7
ress	Amps (RLA), Comp. 1	25/25	25/25	12.2	12.2
Compressor Motor	Amps (LRA), Comp. 1	164/164	164/164	100	100
ວ	HP, Compressor 2	7	7	7	7
	Amps (RLA), Comp. 2	25/25	25/25	12.2	12.2
	Amps (LRA), Comp. 2	164/164	164/164	100	100
٥٢	No.	4	4	4	4
Mot	Volts	208/230	208/230	460	460
30r	Phase	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3
ш	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4
ງງ	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
tor	Phase	3	3	3	3
oora	HP	3	5	3	5
Evaporator Fan	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6
_	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3

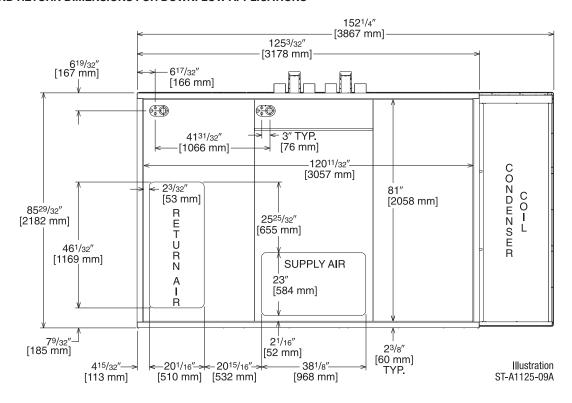
		ELECTRICAL	DATA – RKNL- SERIE	:S	
		H210CR	H210CS	H210DR	H210DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
ë	Volts	208/230	208/230	460	460
mat	Minimum Circuit Ampacity	88/88	91/91	44	46
Unit Information	Minimum Overcurrent Protection Device Size	100/100	100/100	50	50
5	Maximum Overcurrent Protection Device Size	110/110	110/110	50	50
	No.	2	2	2	2
	Volts	200/230	200/230	460	460
i	Phase	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450
or I	HP, Compressor 1	7 1/2	7 1/2	7 1/2	7 1/2
ress	Amps (RLA), Comp. 1	29.5/29.5	29.5/29.5	14.7	14.7
d l	Amps (LRA), Comp. 1	195/195	195/195	95	95
చ	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2
	Amps (RLA), Comp. 2	29.5/29.5	29.5/29.5	14.7	14.7
	Amps (LRA), Comp. 2	195/195	195/195	95	95
ō	No.	4	4	4	4
Mot	Volts	208/230	208/230	460	460
SOL	Phase	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3
e e	Amps (FLA, each)	2.4/2.4	2.4/2.4	1.4	1.4
ŭ	Amps (LRA, each)	4.7/4.7	4.7/4.7	2.4	2.4
	No.	1	1	1	1
Fan	Volts	208/230	208/230	460	460
Evaporator Fan	Phase	3	3	3	3
pora	HP	3	5	3	5
Eva	Amps (FLA, each)	11.5/11.5	14.9/14.9	4.6	6.6
_	Amps (LRA, each)	74.5/74.5	82.6/82.6	38.1	46.3

www.SureComfort.com _____ 35


		ELECTI	RICAL DATA -	- RKNL- SERIE	:S		
		H240CR	H240CS	H240CT	H240DR	H240DS	H240DT
	Unit Operating Voltage Range	187-253	187-253	187-253	414-506	414-506	414-506
ion	Volts	208/230	208/230	208/230	460	460	460
mat	Minimum Circuit Ampacity	101/101	109/109	109/109	52	56	56
Unit Information	Minimum Overcurrent Protection Device Size	110/110	125/125	125/125	60	60	60
n	Maximum Overcurrent Protection Device Size	125/125	125/125	125/125	60	70	70
	No.	2	2	2	2	2	2
	Volts	200/230	200/230	200/230	460	460	460
-	Phase	3	3	3	3	3	3
Mot	RPM	3450	3450	3450	3450	3450	3450
or l	HP, Compressor 1	10	10	10	10	10	10
Compressor Motor	Amps (RLA), Comp. 1	33.3/33.3	33.3/33.3	33.3/33.3	17.9	17.9	17.9
ф	Amps (LRA), Comp. 1	239/239	239/239	239/239	125	125	125
ပ	HP, Compressor 2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2	7 1/2
	Amps (RLA), Comp. 2	29.5/29.5	29.5/29.5	29.5/29.5	14.7	14.7	14.7
	Amps (LRA), Comp. 2	195/195	195/195	195/195	95	95	95
or	No.	6	6	6	6	6	6
Mot	Volts	208/230	208/230	208/230	460	460	460
sor	Phase	1	1	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3
mu	Amps (FLA, each)	2.4/2.4	2.4/2.4	2.4/2.4	1.4	1.4	1.4
ິນ	Amps (LRA, each)	4.7/4.7	4.7/4.7	4.7/4.7	2.4	2.4	2.4
	No.	1	1	1	1	1	1
Fan	Volts	208/230	208/230	208/230	460	460	460
Evaporator Fan	Phase	3	3	3	3	3	3
pora	HP	5	7 1/2	7 1/2	5	7 1/2	7 1/2
Evaj	Amps (FLA, each)	14.7/14.7	23.1/23.1	23.1/23.1	6.6	9.6	9.6
_	Amps (LRA, each)	82.6/82.6	136/136	136/136	46.3	67	67

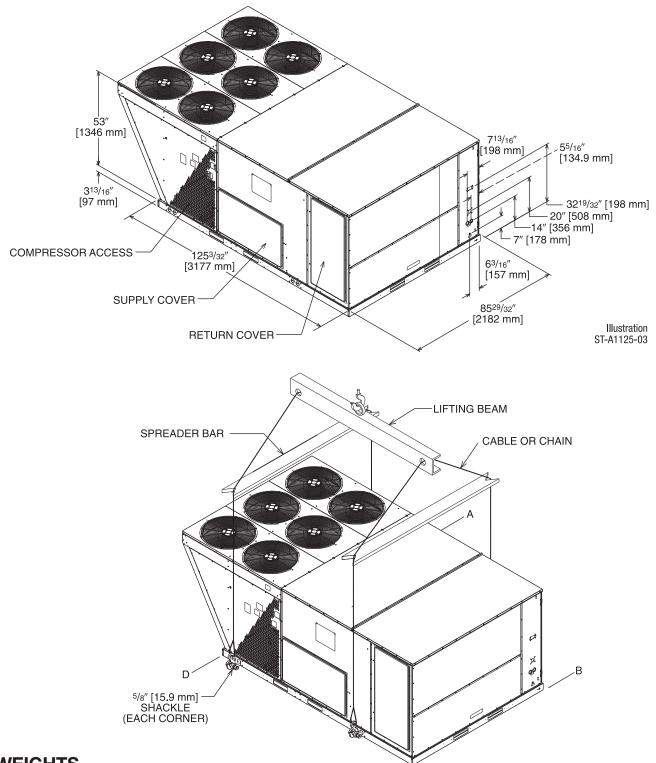
		ELECTRICAL I	DATA – RKNL- SERIE	S	
		H300CR	H300CS	H300DR	H300DS
	Unit Operating Voltage Range	187-253	187-253	414-506	414-506
Unit Information	Volts	208/230	208/230	460	460
	Minimum Circuit Ampacity	147/147	149/149	60	63
it Infor	Minimum Overcurrent Protection Device Size	175/175	175/175	70	70
5	Maximum Overcurrent Protection Device Size	175/175	175/175	70	80
j.	No.	2	2	2	2
	Volts	200/240	200/240	460	460
	Phase	3	3	3	3
Compressor Motor	RPM	3450	3450	3450	3450
sor	HP, Compressor 1	11 1/2	11 1/2	11 1/2	11 1/2
res	Amps (RLA), Comp. 1	48.1/48.1	48.1/48.1	18.6	18.6
g [Amps (LRA), Comp. 1	245/245	245/245	125	125
ت [HP, Compressor 2	11 1/2	11 1/2	11 1/2	11 1/2
	Amps (RLA), Comp. 2	48.1/48.1	48.1/48.1	18.6	18.6
	Amps (LRA), Comp. 2	245/245	245/245	125	125
ō	No.	6	6	6	6
Ma Ma	Volts	208/230	208/230	460	460
Sor	Phase	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3
m (Amps (FLA, each)	2.4/2.4	2/2	1.4	1.4
ర	Amps (LRA, each)	4.7/4.7	3.9/3.9	2.4	2.4
_]	No.	1	1	1	1
Far	Volts	208/230	208/230	460	460
j	Phase	3	3	3	3
por:	HP	7 1/2	10	7 1/2	10
Evaporator Fan	Amps (FLA, each)	24.2/24.2	28.5/28.5	9.6	12.5
-	Amps (LRA, each)	136/136	178/178	67	74.6

[] Designates Metric Conversions


SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

* RECOMMENDED DUCT CONNECTION SIZE

DUCT SIDE VIEW (REAR)


SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

BOTTOM VIEW

[] Designates Metric Conversions

UNIT DIMENSIONS GAS HEAT / ELECTRIC COOLING PACKAGE

WEIGHTS

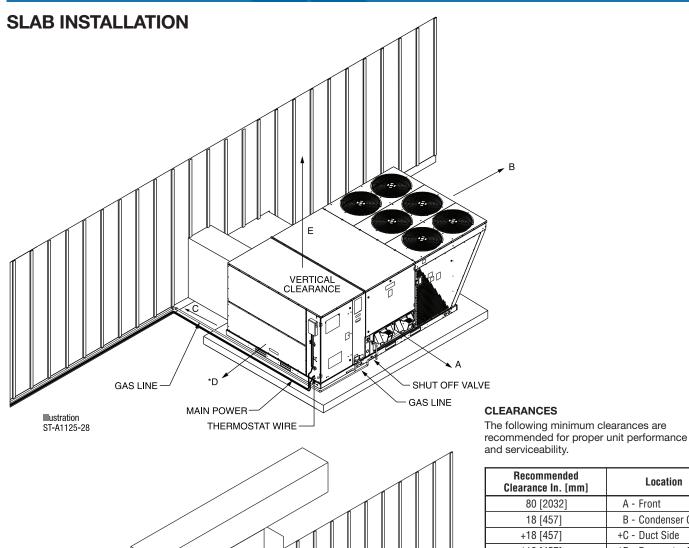
Accessory	Shipping—Ibs [kg]	Operating—lbs [kg]
Economizer—Downflow	155 [70.31]	146 [66.22]
Economizer—Horizontal	165 [74.80]	155 [70.31]
Fresh Air Damper (Manual)	51 [23.13]	40 [18.14]
Fresh Air Damper (Motorized)	46 [20.87]	35 [15.88]
Roof Curb 14"	170 [77.11]	164 [74.39]

Corner weights measured at base of unit.

32%

Capacity Tons [kW]

15-25 [52.8-87.9]


Corner Weights by Percentage

16%

D

24%

^[] Designates Metric Conversions

*18 [457] *D - Evaporator End 60 [1524] E - Above *Without Economizer. 48" [1219 mm] With Economizer +Without Horizontal Economizer, 42" [1067 mm] with Horizontal Economizer

Location

B - Condenser Coil

A - Front

+C - Duct Side

	MAIN POWER WIRE THERMOSTAT WIRE THERMOSTAT WIRE
--	---

[] Designates Metric Conversions

www.SureComfort.com

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Downflow Economizer w/Single Enthalpy (DDC)	AXRD-01RMDCM3	277 [125.6]	168 [76.2]	Yes
Downflow Economizer w/Smoke Detector (DDC)	AXRD01RMDDM3	280 [127.0]	171 [77.6]	Yes
Dual Enthalpy Kit	RXRX-AV04	1 [.5]	.5 [0.2]	No
Horizontal Economizer w/Single Enthalpy (DDC)	AXRD-01RMHCM3	333 [151.0]	301 [36.5]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Power Exhaust (208/230V)	RXRX-BGF05C	119 [54.0]	59 [26.8]	No
Power Exhaust (460V)	RXRX-BGF05D	119 [54.0]	59 [26.8]	No
Manual Fresh Air Damper*	AXRF-KFA1	61 [27.7]	52 [23.6]	No
Motorized Kit for Manual Fresh Air Damper*	RXRX-AW03	42 [19.1]	35 [15.9]	No
Modulating Motor Kit w/position feedback for RXRF-KFA1	RXRX-AW05	45 [20.4]	38 [17.2]	No
Roofcurb, 14"	RXKG-CBH14	184 [83.5]	176 [79.8]	No
Roofcurb Adapter to RXRK-E56	RXRX-CJCE56	465 [210.9]	415 [88.2]	No
Roofcurb Adapter to RXKG-CAF14	RXRX-CJCF14	555 [251.7]	505 [29.1]	No
Concentric Diffuser (Step-Down, 18" x 36")	RXRN-AD81	310 [140.6]	157 [71.2]	No
Concentric Diffuser (Step-Down, 24" x 48")	RXRN-AD86	367 [166.5]	212 [96.2]	No
Concentric Diffuser (Step-Down, 28" x 60")	RXRN-AD88	410 [186.0]	370 [67.8]	No
Concentric Diffuser (Flush, 18" x 36")	RXRN-AD80	213 [96.6]	115 [52.2]	No
Downflow Transition (Rect. to Rect., 18" x 36")	RXMC-CJ07	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 24" x 48")	RXMC-CK08	81 [36.7]	74 [33.6]	No
Downflow Transition (Rect. to Rect., 28" x 60")	RXMC-CL09	81 [36.7]	74 [33.6]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [0.9]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [0.9]	1.5 [.7]	Yes
Unfused Service Disconnect+	RXRX-AP01	10 [4.5]	9 [4.1]	Yes
Comfort Alert (1 per Compressor)	RXRX-AZ01	3 [1.4]	2 [0.9]	Yes
BACnet Communication Card	RXRX-AY01	1 [0.5]	1 [0.5]	No
LonWorks Communication Card	RXRX-AY02	1 [0.5]	1 [0.5]	No
Room Humidity Sensor	RHC-ZNS4	1 [0.5]+	1 [0.5]+	No*
Room Temperature and Relative Humidity Sensor	RHC-ZNS5	1 [0.5]+	1 [0.5]+	No*
Hail Guard Louvers	AXRX-AAD01L	55 [24.8]	45 [20.3]	Yes
MERV 8 Filter	RXMF-M08A22520	2 [0.9]	1 [0.45]	No
MERV 13 Filter	RXMF-M13A22520	2 [0.9]	1 [0.45]	No

^{*}Motorized Kit and Manual Fresh Air Damper must be combined for a complete Motorized Outside Air Damper Selection. +Do not use on or RKNL-C 300C voltage models.

^[] Designates Metric Conversions

FLUSH MOUNT ROOM TEMPERATURE SENSORS FOR NETWORKED DDC APPLICATIONS

ROOM TEMPERATURE SENSOR RHC-ZNS1 with TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

ROOM TEMPERATURE SENSOR RHC-ZNS2 with TIMED OVERRIDE BUTTON and STATUS INDICATOR

 $10k\Omega$ room temperature sensor transmits room temperature to DDC system. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time. Status Indicator Light transmits ALARM flash code to occupied space.

ROOM TEMPERATURE SENSOR RHC-ZNS3 with SETPOINT ADJUSTMENT and TIMED OVERRIDE BUTTON

 $10k\Omega$ room temperature sensor with setpoint adjustment transmits room temperature to DDC system along with desired occupied room temperature setpoint. Timed override button allows tenant to change from unoccupied temperature setpoint to occupied temperature setpoint for a preset time.

COMMUNICATION CARDS Field Installed

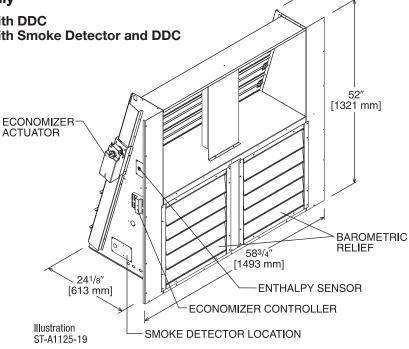
BACnet® COMMUNICATION CARD RXRX-AY01

The field installed BACnet® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the BACnet Application Specific Controller device profile. The BACnet® Communication Module plugs onto the unit RTU-C controller and allows communication between the RTU-C and the BACnet MSTP network.

LonWorks® COMMUNICATION CARD RXRX-AY02

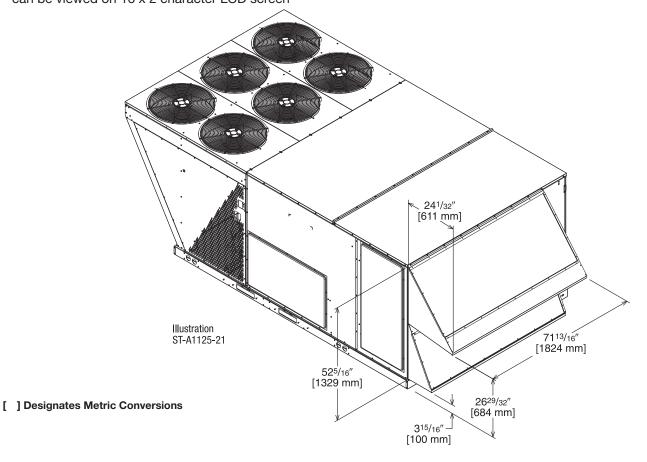
The field installed LonWorks® Communication Card allows the RTU-C unit controller to communicate with a third party building management system that supports the LonMark Space Comfort Controller (SCC) functional profile or LonMark Discharge Air Controller (DAC) functional profile. The LonMark Communication Module plugs onto the RTU-C controller and allows communication between the RTU-C and a LonWorks Network.

ECONOMIZERS


Use to Select Factory Installed Options Only

AXRD-01RMDCM3—Single Enthalpy (Outdoor) with DDC AXRD-01RMDDM3—Single Enthalpy (Outdoor) with Smoke Detector and DDC

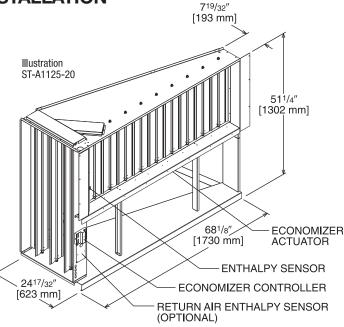
RXRX-AR02—Dual Enthalpy Upgrade Kit


RXRX-AV04—Optional Wall-Mounted CO₂ Sensor

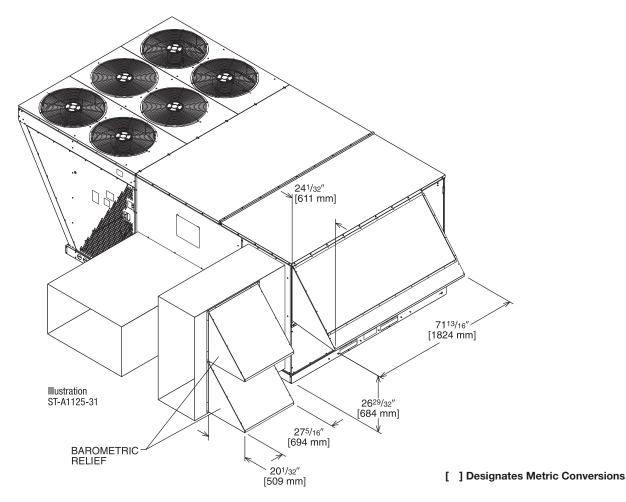
- Features **Honeywell** Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 character LCD screen

TOLERANCE ± .125

[254 mm]

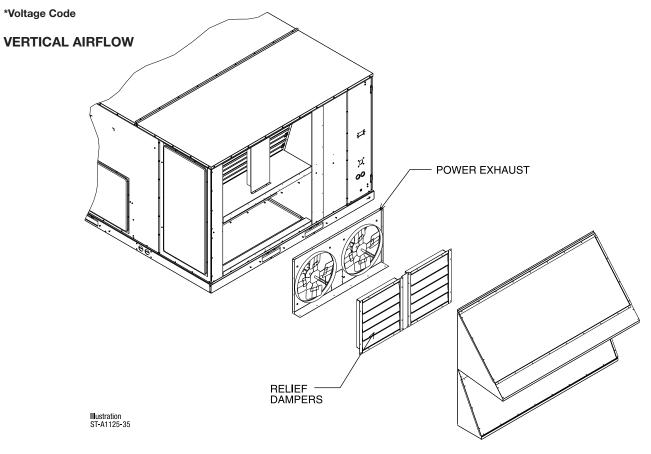


ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION Field Installed Only


AXRD01RMHCM3—Single Enthalpy (Outdoor) with DDC RXRX-AV04—Dual Enthalpy Upgrade Kit

RXRX-AR02—Wall-mounted CO₂ Sensor

- Features **Honeywell** Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- Field Installed Power Exhaust Available
- If connected to a Building Automation System (BAS), all economizer functions can be viewed on the (BAS) or 16 x 2 LCD screen
- If connected to thermostat, all economizer functions can be viewed on 16 x 2 LCD screen



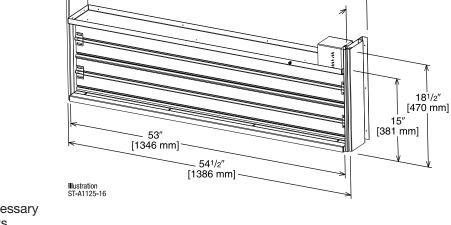
TOLERANCE ± .125

POWER EXHAUST KIT FOR AXRD-PMCM3 & SMCM3 ECONOMIZERS

RXRX-BGF05 (C, D, or Y*)

Model No.	No. Volts		Phase	HP	Low Speed		High Speed ①		FLA	LRA
Model No.	of Fans	VUIIS	FIIASE	(ea.)	CFM [L/s] ②	RPM	CFM [L/s] ②	RPM	(ea.)	(ea.)
RXRX-BGF05C	2	208-230	1	0.75	4100 [1935]	850	5200 [2454]	1050	5	4.97
RXRX-BGF05D	2	460	1	0.75	4100 [1935]	850	5200 [2454]	1050	2.2	3.4
RXRX-BGF05Y	2	575	1	0.75	4100 [1935]	850	5200 [2454]	1050	1.5	2.84

NOTES: $\ensuremath{\textcircled{1}}$ Power exhaust is factory set on high speed motor tap.

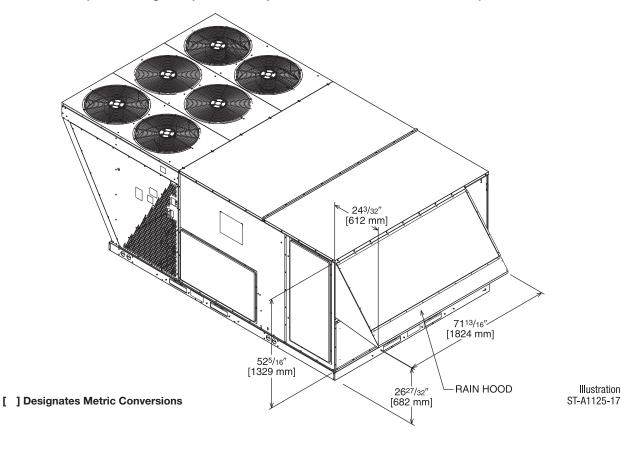

[] Designates Metric Conversions

② CFM is per fan at 0" w.c. external static pressure.

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW03 (Motor Kit for AXRF-KFA1) RXRX-AW05 (Modulating Motor Kit with position feedback for AXRF-KFA1)

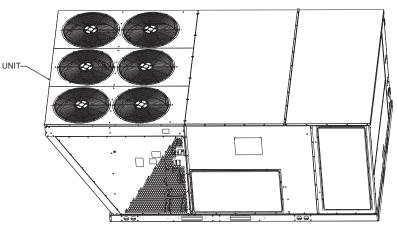
- Features **Honeywell** Controls
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin and 4-pin Electrical Connections
- Pre-Configured No Field Adjustments Necessary
- Addition of Dual Enthalpy Upgrade Kit allows limited economizer function
- CO₂ Sensor Input Available for Demand Control Ventilation (DCV)
- Optional Remote Minimum Position Potentiometer (270 ohm) (Honeywell #S963B1136) is available from Prostock
- All fresh air damper functions can be viewed at the RTU-C unit controller display
- If connected to a Building Automation System (BAS), all fresh air damper functions can be viewed on the (BAS), on 16 x 2 LCD screen
- If connected to thermostat, all fresh air damper functions can be viewed on 16 x 2 LCD screen

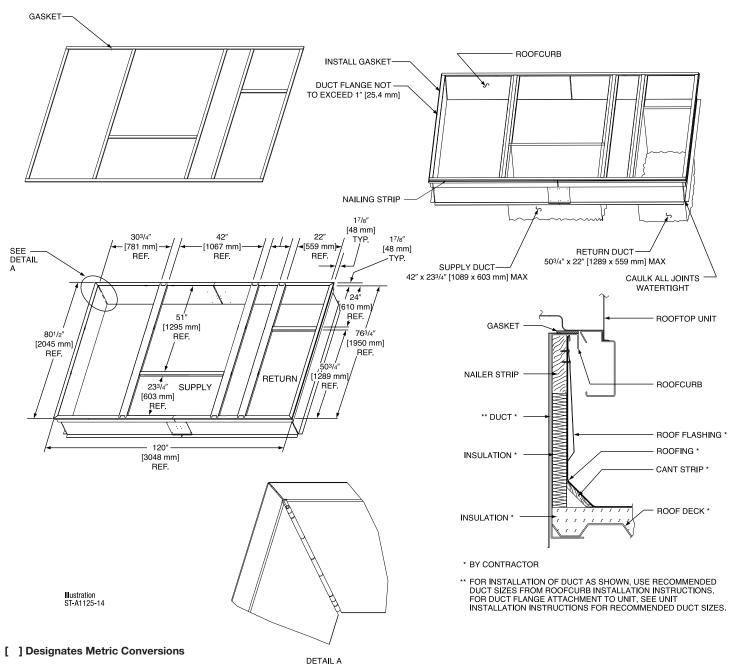


[181 mm]

AXRF-KFA1 (Manual)

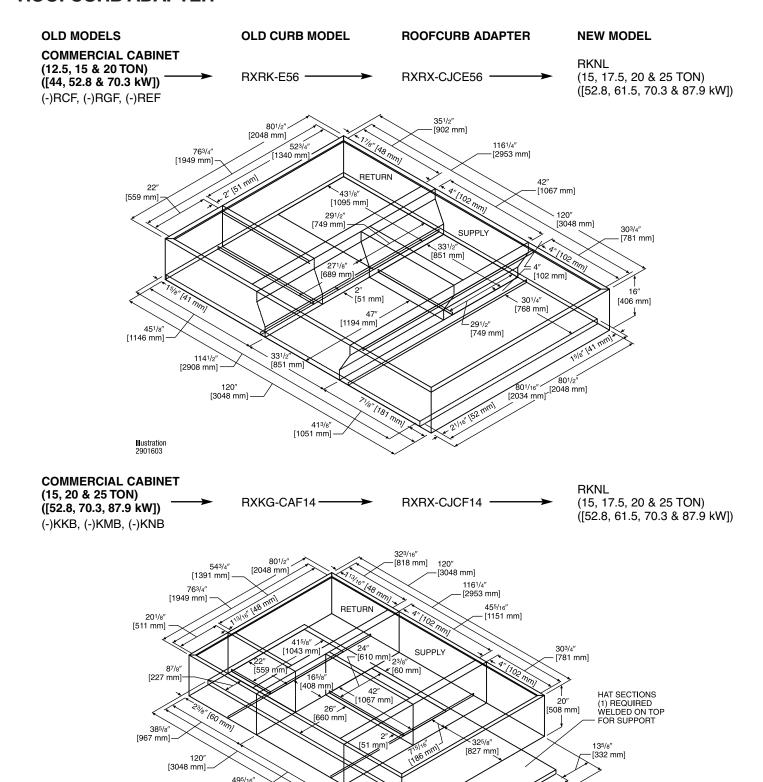
RXRX-AW03 (Motorized damper kit for manual fresh air damper)


RXRX-AW05 (Modulating damper kit with position feedback for AXRF-KFA1)


ROOFCURBS (Full Perimeter)

- Sure Comfort's new roofcurb designs can be utilized on 15, 17.5, 20 and 25 ton [52.8, 61.5. 70.3 and 87.9 kW] models.
- One available height (14" [356 mm]).
- Quick assembly corners for simple and fast assembly.
- 1" [25.4 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

TYPICAL INSTALLATION



ROOFCURB ASSEMBLY

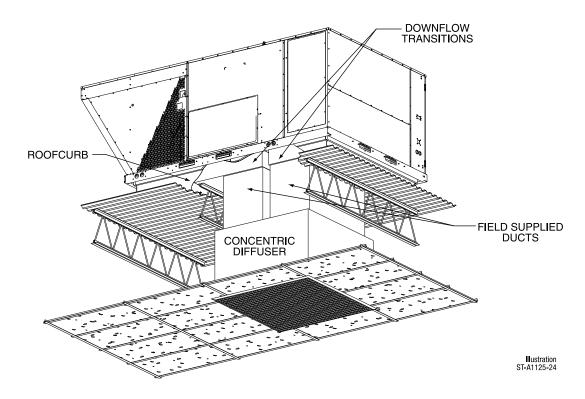
www.SureComfort.com

ROOFCURB ADAPTER

[] Designates Metric Conversions

Illustration

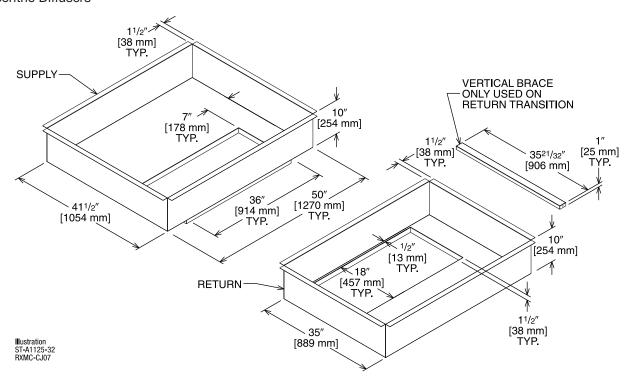
2901604


[829 mm]

[497 mm]

[332 mm]

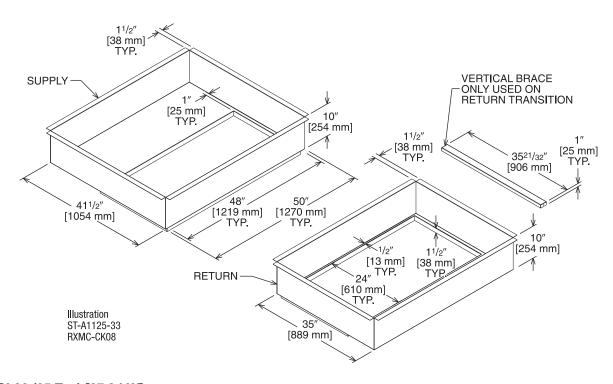
53³/8" -[1381 mm]


CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

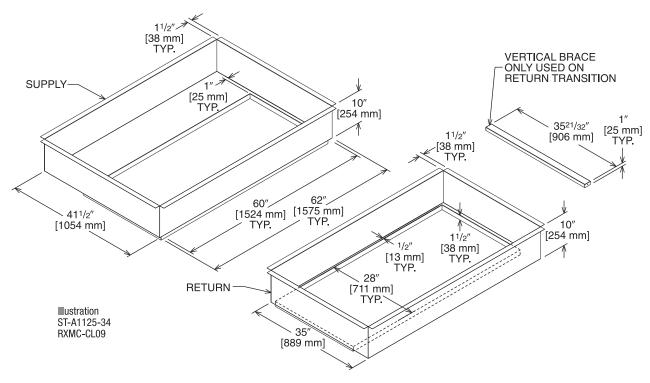
RXMC-CJ07 (15 Ton) [52.8 kW]

 Used with RXRN-AD80 and RXRN-AD81 Concentric Diffusers



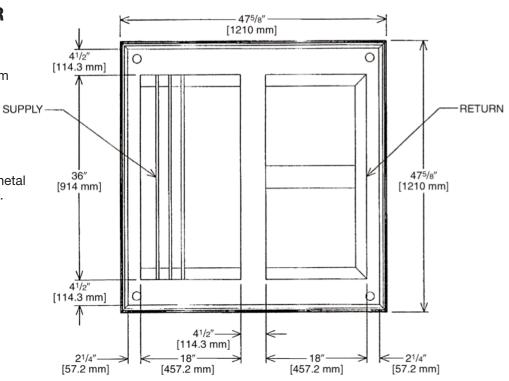
[] Designates Metric Conversions

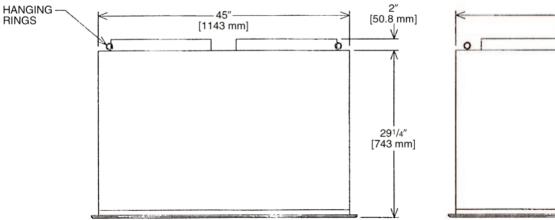
DOWNFLOW TRANSITION DRAWINGS (Cont.)

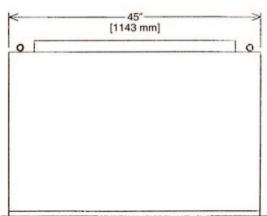

RXMC-CK08 (20 Ton) [70.3 kW]

■ Used with RXRN-AD86 Concentric Diffusers

RXMC-CL09 (25 Ton) [87.9 kW]


■ Used with RXRN-AD88 Concentric Diffusers

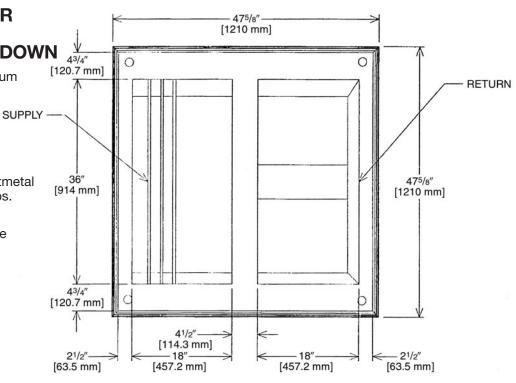


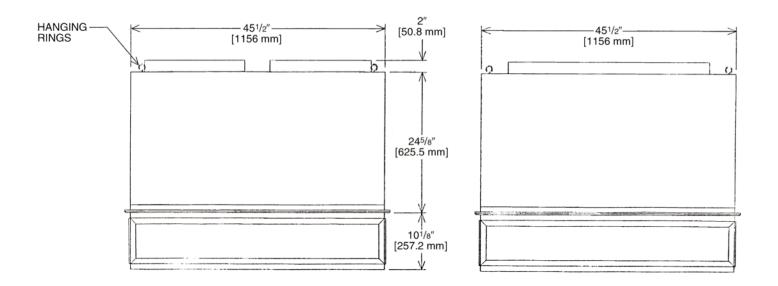

[] Designates Metric Conversions

CONCENTRIC DIFFUSER RXRN-AD80 SERIES 15 TON [52.8 kW] FLUSH

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

CONCENTRIC DIFFUSER SPECIFICATIONS

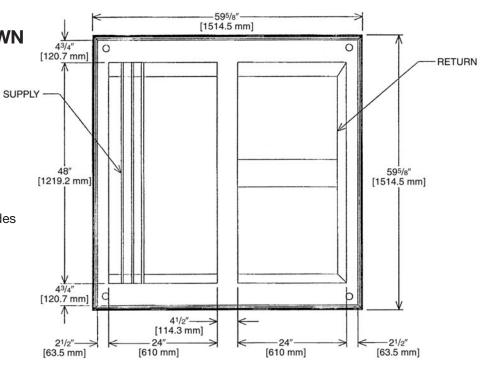

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	5600 [2643]	0.36	28-37	1000	2082
	5800 [2737]	0.39	29-38	1036	2156
RXRN-AD80	6000 [2832]	0.42	40-50	1071	2230
NANIN-ADOU	6200 [2926]	0.46	42-51	1107	2308
	6400 [3020]	0.50	43-52	1143	2379
	6600 [3115]	0.54	45-56	1179	2454

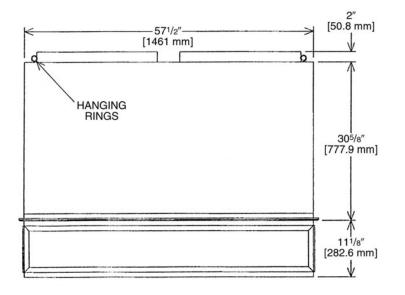

[] Designates Metric Conversions

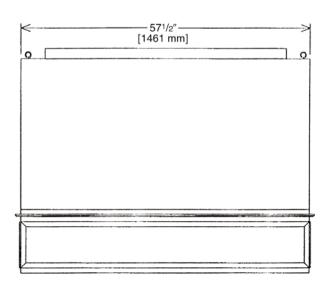
CONCENTRIC DIFFUSER RXRN-AD81 SERIES 15 TON [52.8 kW] STEP DOWN

 All aluminum diffuser with aluminum return air eggcrate.

- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

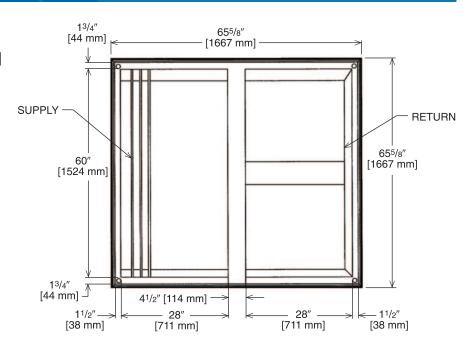

CONCENTRIC DIFFUSER SPECIFICATIONS

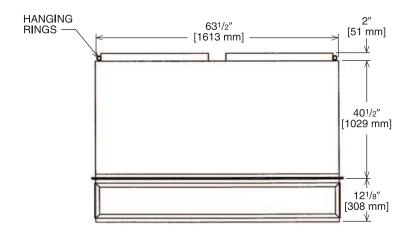

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	5600 [2643]	0.36	39-49	920	920
	5800 [2737]	0.39	42-51	954	954
RXRN-AD81	6000 [2832]	0.42	44-54	1022	1022
UVUIN-ADO I	6200 [2926]	0.46	45-55	1056	1056
	6400 [3020]	0.50	46-55	1090	1090
	6600 [3115]	0.54	47-56	1124	1124

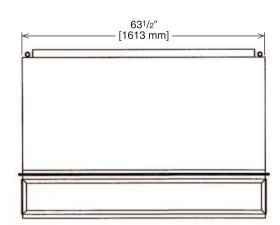

[] Designates Metric Conversions

CONCENTRIC DIFFUSER RXRN-AD86 SERIES 20 TON [70.3 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.


CONCENTRIC DIFFUSER SPECIFICATIONS


PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	7200 [3398]	0.39	33-38	827	827
	7400 [3492]	0.41	35-40	850	850
	7600 [3587]	0.43	36-41	873	873
	7800 [3681]	0.47	38-43	896	896
RXRN-AD86	8000 [3776]	0.50	39-44	918	918
	8200 [3870]	0.53	41-46	941	941
	8400 [3964]	0.56	43-49	964	964
	8600 [4059]	0.59	44-50	987	987
	8800 [4153]	0.63	47-55	1010	1010


[] Designates Metric Conversions

CONCENTRIC DIFFUSER RXRN-AD88 SERIES 25 TON [87.9 kW] STEP DOWN

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

CONCENTRIC DIFFUSER SPECIFICATIONS

PART Number	CFM [L/s]	STATIC Pressure	THROW FEET	NECK Velocity	JET Velocity
	10000 [4719]	0.51	46-54	907	907
	10500 [4955]	0.58	50-58	953	953
	11000 [5191]	0.65	53-61	998	998
RXRN-AD88	11500 [5427]	0.73	55-64	1043	1043
	12000 [5663]	0.82	58-67	1089	1089
	12500 [5898]	0.91	61-71	1134	1134
	13000 [6134]	1.00	64-74	1179	1179

[] Designates Metric Conversions

Guide Specifications RKNL-H180 thru H300

You may copy this document directly into your building specification. This specification is written to comply with the 2004 version of the "master format" as published by the Construction Specification Institute, www.csinet.org.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 15 to 25 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, with aluminum foil facing on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

1. Thermostat must

a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.

b. must include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. RTU-C controller

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-32VAC input power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 158°F (70°C), 10% 95% RH (non-condensing).
- 4. Controller shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, fire shutdown, return air enthalpy, fan status, remote time clock/door switch.
- 5. Shall accept a CO2 sensor in the conditioned space, and be Demand Control Ventilation (DCV) ready.
- 6. Shall provide the following outputs: Economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3, exhaust/ occupied.
- 7. Unit shall provide surge protection for the controller through a circuit breaker.
- 8. Shall have a field installed communication card allowing the unit to be Internet capable, and communicate at a Baud rate of 19.2K or faster
- 9. Shall have an LED display independently showing the status of activity on the communication bus, and processor operation.
- 10. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 11. Software upgrades will be accomplished by local download. Software upgrades through chip replacements are not allowed.
- 12. Shall be shock resistant in all planes to 5G peak, 11ms during operation, and 100G peak, 11ms during storage.
- 13. Shall be vibration resistant in all planes to 1.5G @ 20-300 Hz.
- 14. Shall support a bus length of 4000 ft max, 60 devices per 1000 ft section, and 1 RS-485 repeater per 1000 ft sections.

23 09 23.13.B. Open protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consume 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall have either a field installed BACnet® plug-in communication card which includes an EIA-485 protocol communication port, or a field installed LonWorks™ plug-in communications card.
- 5. The BACnet® plug in communication card shall include built-in protocol for BACNET (MS/TP and PTP modes)
- 6. The LonWorks™ plug in communication card shall include the Echelon processor required for all Lon applications.
- 7. Shall allow access of up sto 62 network variables (SNVT). Shall be compatible with all open controllers
- 8. Baud rate Controller shall be selectable through the EIA-485 protocol communication port.
- Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 10. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air enthalpy, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/ humidity/ remote occupancy.

- 11. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust.
- 12. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 100VA capabilities.
- 2. Shall utilize color-coded wiring.
- 3. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
- 4. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze sensor, high pressure switches.
- 5. Unit shall include a minimum of one 10-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
 - c. Loss of charge switch shall have a different sized connector than the high pressure switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different colored wires for the circuit 1 and circuit 2 low and high pressure switches.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service person to correctly wire and or troubleshoot the rooftop unit.
 - c. High pressure switch shall have a different sized connector than the loss of charge switch. They shall physically prevent the cross-wiring of the safety switches between the high and low pressure side of the system.
- 4. Freeze protection sensor, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.
- 6. Heating section shall be provided with the following minimum protections.
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 93 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 Small-Capacity Self-Contained Air Conditioners

23 81 19.13.A. General

- 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
- 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
- 3. Unit shall use environmentally safe, R-410A refrigerant.
- 4. Unit shall be installed in accordance with the manufacturer's instructions.
- 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3 phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210 and 360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.

23 81 19.13.C. Delivery, Storage, and Handling

- 1. Unit shall be stored and handled per manufacturer's recommendations.
- 2. Lifted by crane requires either shipping top panel or spreader bars.
- 3. Unit shall only be stored or positioned in the upright position.

23 81 19.13.E. Project Conditions

1. As specified in the contract.

23 81 19.13.F. Operating Characteristics

- 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
- 2. Compressor with standard controls shall be capable of operation down to 40°F (4°C), ambient outdoor temperatures. Accessory low ambient kit is necessary if mechanically cooling at ambient temperatures below 40°F (4°C).
- 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
- 4. Unit shall be factory configured for vertical supply & return configurations.
- 5. Unit shall be field convertible from vertical to horizontal configuration.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F / 16°C): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1 lb. density, flexible fiberglass insulation, aluminum foil-face coated on the air side.
- 4. Base of unit shall have locations for thru-the-base gas and electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on all sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.

- c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" x 11-1/2 NPT drain connection through the side of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Gas Connections:

- a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Stainless steel metal hinges are standard on all doors.
 - c. Panels covering control box, indoor fan, indoor fan motor and gas components (where applicable), shall have 1/4 turn latches.

23 81 19.13.I. Gas Heat

1. General

- a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
- b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
- c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
- d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
- 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor.
 - a. IFC board shall notify users of fault using an LED (light-emitting diode).
- 3. Standard Heat Exchanger construction
 - Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge aluminum coated steel for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft. (610m) elevation. Additional accessory kits may be required for applications above 2000 ft. (610m) elevation, depending on local gas supply conditions.
- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes and vestibule plate.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motors and blowers
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.

- b. Shall be made from steel with a corrosion-resistant finish.
- c. Shall have permanently lubricated sealed bearings.
- d. Shall have inherent thermal overload protection.
- e. Shall have an automatic reset feature.

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 550 psig, and qualified to UL 1995 burst test at 2,200 psi.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Thermal Expansion Valves (TXV) with orifice type distributor.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through an access port in the front and rear panel of the unit.

2. Compressors

- a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
- b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
- Compressors shall be internally protected from high discharge temperature conditions. Advanced Scroll Temperature Protection on 240-300 sizes.
- d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
- e. Compressor shall be factory mounted on rubber grommets.
- f. Compressor motors shall have internal line break thermal and current overload protection.
- g. Crankcase heaters shall not be required for normal operating range.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 5. Filters shall be standard, commercially available sizes.
- 6. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
- 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan.
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be capable of introducing up to 100% outdoor air.
 - g. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air. The barometric relief damper shall include seals, hardware and hoods to relieve building pressure. Damper shall gravity close upon unit shut down.
 - h. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - i. An outdoor single-enthalpy sensor shall be provided as standard. Outdoor air enthalpy set point shall be adjustable and shall range from the enthalpy equivalent of 63°F @ 50% rh to 73°F @ 50% rh. Additional sensor options shall be available as accessories.
 - j. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 70%, with a range of 0% to 100%.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - m. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - n. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.

2. Two-Position Damper

- a. Damper shall be a Two-Position Damper. Damper travel shall be from the full closed position to the field adjustable %open setpoint.
- b. Damper shall include adjustable damper travel from 25% to 100% (full open).
- c. Damper shall include single or dual blade, gear driven damper and actuator motor.
- d. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- e. Damper will admit up to 100% outdoor air for applicable rooftop units.
- f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
- g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
- h. Outside air hood shall include aluminum water entrainment filter.
- 3. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.
- 4. Head Pressure Control Package
 - a. Controller shall control coil head pressure by condenser-fan cycling.
- 5. Liquid Propane (LP) Conversion Kit
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.
 - e. Non-Powered convenience outlet.
 - f. Outlet shall be powered from a separate 115-120v power source.
 - g. A transformer shall not be included.
 - h. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.

- i. Outlet shall include 15 amp GFI receptacle.
- i. Outlet shall be accessible from outside the unit.

7. Flue Discharge Deflector:

- a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
- b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.

8. Thru-the-Base Connectors:

a. Kits shall provide connectors to permit gas and electrical connections to be brought to the unit through the unit basepan.

9. Propeller Power Exhaust:

- a. Power exhaust shall be used in conjunction with an integrated economizer.
- b. Independent modules for vertical or horizontal return configurations shall be available.
- c. Horizontal power exhaust is shall be mounted in return ductwork.
- d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

10. Roof Curbs (Vertical):

- a. Full perimeter roof curb with exhaust capability providing separate airstreams for energy recovery from the exhaust air without supply air contamination.
- b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

11. Universal Gas Conversion Kit:

a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft. (90-2134m) elevation with liquified propane.

12. Outdoor Air Enthalpy Sensor:

a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.

13. Return Air Enthalpy Sensor:

a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

14. Indoor Air Quality (CO2) Sensor:

- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in wall mount with LED display. The set point shall have adjustment capability.

15. Smoke detectors:

- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - i. One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

26 29 23.12. Adjustable Frequency Drive

- 1. Unit shall be supplied with an electronic variable frequency drive for the supply air fan.
- 2. Drive shall be factory installed in an enclosed cabinet.
- 3. Drive shall meet UL Standard 95-5V.
- 4. The completed unit assembly shall be UL listed.
- 5. Drives are to be accessible through a tooled access hinged door assembly.
- 6. The unit manufacturer shall install all power and control wiring.
- 7. The supply air fan drive output shall be controlled by the factory installed main unit control system and drive status and operating speed shall be monitored and displayed at the main unit control panel.
- 8. Drive shall be programmed and factory run tested in the unit.

Sure	Comfort®	RKNL-H	Packaged	Gas Fle	ctric Unit
Juic	COMMON	IVIVIA E-I I I	ackayeu	Uas Lic	

BEFORE PURCHASING THIS APPLIANCE, READ IMPORTANT ENERGY COST AND EFFICIENCY INFORMATION AVAILABLE FROM YOUR RETAILER.

GENERAL TERMS OF LIMITED WARRANTY*

Sure Comfort® will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor

3 Phase, Commercial ApplicationsFive (5) Years **Parts**

3 Phase, Commercial Applications.....One (1) Year

Factory Standard Heat Exchanger

3 Phase, Commercial ApplicationsTen (10) Years Stainless Steel Heat Exchanger

3 Phase, Commercial ApplicationsTwenty (20) Years

^{*}For complete details of the Limited and Conditional Warranties, including applicable terms and conditions, contact your local contractor or the Manufacturer for a copy of the product warranty certificate.

66 _____ www.SureComfort.com

Sure Comfort®

5600 Old Greenwood Road, Fort Smith, AR 72908

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.